Cho đường tròn tâm O có đường kính AB=2a nằm trong mặt phẳng (P). Gọi I là điểm đối xứng với O qua A. Lấy điểm S sao cho SI vuông góc với mặt phẳng (P) và SI=2a. Tính bán kính R của mặt cầu qua đường tròn tâm O và điểm S
A. R = a 65 4
D. R = a 65 16
C. R = a 5
D. R = 7 a 4
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R=6cm. I, K là 2 điểm trên đoạn OA sao cho OI=IK=KA. Các mặt phẳng (α), (b) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính r 1 , r 2 . Tính tỉ số r 1 r 2
A. r 1 r 2 = 4 10
B. r 1 r 2 = 5 3 10
C. r 1 r 2 = 3 10 4
D. r 1 r 2 = 3 10 5
Cho mặt cầu S(O;R) và (P) cách O một khoảng bằng h (0<h<R). Gọi (L) là đường tròn giao tuyến của mặt cầu (S) và (P) có bán kính r. Lấy A là một điểm cố định thuộc (L). Một góc vuông xAy trong (P) quay quanh điểm A. Các cạnh Ax, Ay cắt (L) ở C và D. Đường thẳng đi qua A và vuông góc với (P) cắt mặt cầu ở B. Diện tích ΔBCD lớn nhất bằng
A. 2 r r 2 + 4 h 2
B. r r 2 + 4 h 2
C. r r 2 + h 2
D. 2 r r 2 + h 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 0 ; - 1 và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian Oxyz cho điểm A(1;0;-1). Gọi (S) là mặt cầu tâm I, đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R=3
B. R=9
C. R=5
D. R=1
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 1 ; 0 ; 1 , B 1 ; 2 ; - 1 , C - 1 ; 2 ; 3 và I là tâm đường tròn ngoại tiếp tam giác ABC. Tính bán kính R mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (Oxz).
A. R = 4
B. R = 3
C. R = 5
D. R = 2
Trong không gian với hệ trục tọa độ O x y z , cho A − 3 ; 1 ; 1 , B 1 ; − 1 ; 5 và mặt phẳng P : 2 x − y + 2 z + 11 = 0. Mặt cầu S đi qua hai điểm A , B và tiếp xúc với mặt phẳng P tại điểm C. Biết C luôn thuộc đường tròn T cố định. Tính bán kính r của đường tròn T
A. r = 3 .
B. r = 4.
C. r = 2 .
D. r = 2.