Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...

Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).

Tomioka Yuko
15 tháng 12 2021 lúc 16:54

a) Ta có: ΔOHA∼ΔOAM(g.g)ΔOHA∼ΔOAM(g.g)

⇔OHOA=OAOM⇔OA2=OH.OM=R2⇔OHOA=OAOM⇔OA2=OH.OM=R2

b) Ta có: ΔOAMΔOAM vuông tại A

ΔOIMΔOIM vuông tại I.

=> OM là cạnh huyền chung của hai tam giác trên

=> ˆOIM;ˆOAMOIM^;OAM^ cùng chắn OM

Vậy O, I, A, M cùng nằm trên đường tròn đường kính OM

c) Ta có: ΔOMI∼ΔOKH(g.g)ΔOMI∼ΔOKH(g.g)

⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇒OCOK=OIOC⇒OCOK=OIOC

Xét ΔOCKvàΔOICΔOCKvàΔOIC

OCOK=OIOCOCOK=OIOC

ˆO:chungO^:chung

⇒ΔOCK∼ΔOIC(c.g.c)⇒ˆOCK=ˆOIC=90o⇒OC⊥OK⇒ΔOCK∼ΔOIC(c.g.c)⇒OCK^=OIC^=90o⇒OC⊥OK

=> KC là tiếp tuyến đường tròn (O; R)

Tomioka Yuko
15 tháng 12 2021 lúc 17:00

Cho (O;R) và 1 điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với  đường tròn ( A là tiếp điểm ) . Tia Mx nằm giữa MA và

tham khảo hình bạn nhé?


Các câu hỏi tương tự
Lê Thị Minh Hòa
Xem chi tiết
Đức Mạnh
Xem chi tiết
Nguyễn Minh Thảo
Xem chi tiết
wyd
Xem chi tiết
nguyễn thúy quỳnh
Xem chi tiết
nguyễn duy khánh
Xem chi tiết
Lê Thị Hồng Hạnh
Xem chi tiết
Huỳnh Nguyên Phát
Xem chi tiết
hanvu
Xem chi tiết