Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
Cho nửa đường tròn (O) đường kính EF. Từ O, vẽ tia Ot vuông góc EF, Nó cắt nửa đường tròn tâm O tại I. Trên tia It lấy điểm A sao cho IA=IO. Từ A, kẻ 2 tiếp tuyến AP và AQ với nửa đường tròn ( P,Q là các tiếp điểm)
a)chứng minh tứ giác APOQ nội tiếp và tam giác APQ là tam giác đều
b)Từ điểm S tùy ý trên cung PQ ( S không trùng với P, Q), vẽ tiếp tuyến thứ 3 với nửa đường tròn (O); tiếp tuyến này cắt AP tại H, cắt AQ tại K. Tính số đo độ của góc HOK và chu vi tam giác AHK theo R.
c)Gọi M,N lần lượt là giao điểm của PQ với OH và OK. Chứng minh tứ giác OMKQ nội tiếp
d) Chứng tỏ 3 đường thẳng HN, KM, OS đồng quy tại một điểm và SOMN=1/4 SOKH
cho đường (O,R) đường kính AB. H nằm giữa A và O. Dây cung CD vuông góc AB tại H.
a) CMR: H là trung điểm CD. góc ACB=?
b) E là điểm đối xứng với A qua H
CMR: ACED là hình thoi suy ra DE vuông góc BC
c) Gọi F là giao điểm của DE và BC
CMR: HF là tiếp tuyến của ( I,EB/2)
d) Tìm vị trí của H trên OA sao cho tam giác BCD đều và tính S tam giác BCD theo R trong trường hợp đó.
Cảm ơn trước ạ!!!
cho đường (O,R) đường kính AB. H nằm giữa A và O. Dây cung CD vuông góc AB tại H.
a) CMR: H là trung điểm CD. góc ACB=?
b) E là điểm đối xứng với A qua H
CMR: ACED là hình thoi suy ra DE vuông góc BC
c) Gọi F là giao điểm của DE và BC
CMR: HF là tiếp tuyến của ( I,EB/2)
d) Tìm vị trí của H trên OA sao cho tam giác BCD đều và tính S tam giác BCD theo R trong trường hợp đó.
Cảm ơn trước ạ!!!
cho tam giác ABC cân tại A nội tiếp đường tròn tâm O bán kính R biết AB=10 cm BC=12cm tính R và khoảng cách từ O đến các cạnh của tam giác ABC
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)
cho hai đường tròn (o;R)và (o';R')với R R' cắt nhau tại A và B.kẻ tiếp tuyến DE của 2 đường tròn với D thuộc (O) và E thuộc (O') sao cho B gần tiếp tuyến đó hơn so với A . tia AB cắt DE ở M . chứng minh M là trung điểm của DE
Cho đường tròn (O) đường kính AB.C là 1 điểm trên đường tròn . Vẽ CH vuông góc AB. Vẽ đường tròn tâm C bán kính CH cắt đường tròn (O) tại D và E.
a) C/m OC vông góc với DE
b) C/m DE đi qua trung điểm CH.