Cho đường tròn (O)và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm) và đường kính BC. Trên đoạn thẳng CO lấy điểm I (I khác C, I khác O). Đường thẳng AI cắt (O) tại 2 điểm D và E (D nằm giữa A và E). Gọi H là trung điểm của đoạn thẳng DE.
1) Chứng minh 4 điểm A, B, O, H cùng nằm trên một đường tròn.
2) Chứng minh AB.BE=AE.BD
1: ΔOED cân tại O
mà OH là trung tuyến
nên OH vuông góc DE
góc OHA=góc OBA=90 độ
=>O,H,B,A cùng thuộc 1 đường tròn
2: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=BD/EB
=>AB*EB=AE*BD