Cho đường tròn (O;R) và 1 điểm P cố định trong đường tròn, 2 dây AC, BD thay đổi nhưng vuông góc với nhau tại P.Xác định vị trí của AC và BD sao cho SABCD đạt giát trị lớn nhất?
Cho đường tròn tâm O bán kính R và 1 điểm P cố định trong đường tròn. Hai dây cung AC và BD thay đổi nhưng vuông góc với nhau tại P. Xác định vị trí của AC và BD sao cho diện tích của tứ giác ABCD lớn nhất.
Cho đường tròn (O) có đường kính AC cố định. BD là dây cung di động và vuông góc với AC. Tìm vị trí của dây BD lúc ABCD có diện tích lớn nhất, chứng tỏ lúc ấy ABCD là hình vuông.
Cho nửa đường tròn (O;R) đường kính AC. Dây BD không vuông góc với AC. Xác định vị trí của dây BD để diện tích tứ giác ABCD có giá trị lớn nhất.
cho đường tròn (o:r) và một điểm p cố định khác ở(ốp<r) hai dây ab ,cd thay đổi sao cho ab vuông góc với cd tại p. gọi e,f lần lược là trung điểm của ac,ad. các đường thẳng ép,fp cắt bd,bc lần lượt tại m,n
chưng minh 4 điểm m,n,b,p nằm trên 1 đường tròn cmr bd=2eotìm min ,max của Sacbdcho tam giác nhọn ABC nội tiếp đường tròn (O) . Các đường cao BD , CE ( D thuộc AC , E thuộc AB ) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N ( M khác B , N khác C )
1. CM tứ giác BCDE nộit tiếp được trong 1 đường tròn
2. CM MN // DE
3. khi đường tròn (O) và dây BC cố định , điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn , cm bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để S tam giác ADE đạt max
Cho (O;R) và điểm I cố định nằm trong đường tròn (OI=d<R) , AC và BD là 2 dây cung vuông góc với nhau tại I
a, CMR: \(AB^2+CD^2=AD^2+BC^2=4R^2\)
b, Tính tổng bình phương 4 cạnh và tính tổng bình phương 2 đường chéo của tứ giác ABCD theo R và d
c, Gọi M , N là trung điểm AB và CD . CMR: \(IM\perp CD\)và \(IN\perp AB\)
d, CMR: Tứ giác OMIN là hình bình hành
e, CMR: Khi 2 dây cung AC và BD thay đổi và vuông góc với nhau tại I thì MN luôn đi qua 1 điểm cố định
Cho điểm E cố định nằm trong đường tròn tâm O bán kính R và OE=R/2. Hai dây AB và CD vuông góc với nhau tại E. Xác định vị trí của AB và CD sao cho AB+CD lớn nhất.
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
cho hai đường tròn (O:R)và (O':R') tiếp xúc ngoài tại A(r>R').Vẽ dây AB của (O)và dây AC của (O') sao cho AB vuông góc với AC.
a)chứng minh OB//O'C.
b)chứng mkinh rằng khi B thay đổi trên (O) thì BC đi qua 1 điểm cố định.