Cho đường tròn (O;R), từ điểm A ở bên ngoài đường tròn sao cho OA = 3R kẻ 2 tiếp tuyến AB, AC của (O;R) (B và C là hai tiếp điểm). Qua B kẻ dây cung BD của (O;R) song song với AC. Gọi giao điểm của AD với đường tròn (O;R) là E; I là trung điểm của ED.
a.Chứng minh ABIO là tứ giác nội tiếp.
b.Gọi giao điểm của BE với AC là K. Chứng minh KC2 = KE.KB và K là trung điểm của AC.
c.AO cắt BK tại G, tính độ dài đoạn AG theo R.
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA+góc OBA=180 độ
=>OIAB nội tiếp
b: Xét ΔKCE và ΔKBC có
góc KCE=góc KBC
góc K chung
=>ΔKCE đồng dạng với ΔKBC
=>KC/KB=KE/KC
=>KC^2=KB*KE