Bài 2.3: Ch đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA=2cm, IB=4cm. Tính khoảng cách từ tâm O đến mỗi dây.
Cho đường tròn (O;R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2 cm,IB = 4 cm. Tính khoảng cách từ tâm O đến mỗi dây
cho (O;R) có hai dây AB và CD bằng nhau và vuông góc với nhau tại I. Biết IA=1cm, IB= 7cm. Tính R
Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB vuông góc với CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm và IB = 9cm.
cho đường tròn (O) hai dây AB,CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn .CMR :
a/ IO là tia phân giác của 1 trong hai góc tạo bởi 2 dây AB và CD
B/ Điểm I chia AB , CD thành các đoạn thẳng bằng nhau đôi một
Cho đường tròn tâm O, hai dây AB va CD bằng nhau và không cắt nhau. AB và CD cắt nhau bên ngoài đường tròn tại S. Goi I và K lần lượt là trung điểm của AB và CD. CMR IK vuông góc với SO và IK //AC
Cho đường tròn (O) đường kính AB. Vẽ dây CD không qua tâm vuông góc với AB tại I (A thuộc cung nhỏ CD) biết CD=16cm ; IA=6cm. Tính bán kính của (O;R)
cho đường tròn tâm O bán kính R, trong đường tròn (O) lấy điểm P cách tâm O một khoảng bằng R/2. qua P kẻ hai dây AB và CD vuông góc với nhau(A,B,C,D là các điểm nằm trên đường tròn).tính tổng AB^2+CD^2 theo R
Dây CD của đường tròn tâm O vuông góc với đường kính AB của đường tròn, dây AE chia bán kính OC thành hai đoạn bằng nhau. CMR DE chia dây cung BC thành hai đoạn thẳng bằng nhau