Cho đường tròn (O;R) có dường kính BC, A là 1 điểm di động trên đường tròn. Vẽ Δ đều ABM có đỉnh M nằm ngoài đường tròn (O). Từ C vẽ CH vuông góc MB.
a) C/m: OM vuông góc AB
b) C/m: OM=CH
c) Gọi D, E, F, G theo thứ tự là trung điểm của OC, CM, MH, OH. C/m tứ giác DEFG là hình thoi.
cho đường tròn (O), đ kính BC. A là điẻm di động trên đường tròn . Vẽ tg đều ABM có đỉnh M nằm ngoài đường tròn (O), Từ C kẻ CH vg BM.
a- CM: OM vg AB; OM=CH
b- Gọi D,E,F,G là trung điểm OC,CM,MH,OH. cm: DEFG là hthoi.
cho đường tròn tâm O bán kính 2cm cho một điểm M nằm ngoài đường tròn. Biết OM=4. từ M vẽ tiếp tuyến đường tròn tâm O tại A và B
a) CM: tam giác ABM cân tại M
b) CM: AB vuông góc OM
c) Tính AB
cho đường tròn tâm O bán kính 2cm cho một điểm M nằm ngoài đường tròn. Biết OM=4. từ M vẽ tiếp tuyến đường tròn tâm O tại A và B
a) CM: tam giác ABM cân tại M
b) CM: AB vuông góc OM
c) Tính AB
Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn sao cho OM=2R. Từ M vẽ tiếp tuyến MA và MB với đường (O).
a. CM: Tứ giác MAOB nội tiếp và MO vuông góc AB
b. CM: Tam giác AMB đều và tính AM theo R
c. Qua điểm C thuộc cung nhỏ AB vẽ tiếp tuyến với đường tròn (O) cắt AM tại E và cắt MB tại F. OF cắt AB tại K. OE cắt AB tại H. CM:chu vi tam giác MEF không đổi khi điểm C chạy trên cung nhỏ AB.
d. CM: EK vuông góc OF
e. CM: EF=2HK
cho đường tròn (O,R), điểm M nằm bên ngoài đường tròn. Kẻ các tiếp tuyến MA, MB ứng với đường tròn (A, B là các tiếp điểm)
a, CM OM vuông góc AB
b, vẽ đường kính AC. CM OM song song BC
Cho đường tròn tâm O bán kính 5cm. Từ điểm M nằm ngoài (O) vẽ tiếp tuyến MA (A là tiếp điểm).
a/ Biết OM = 10 cm. Tính AM.
b/ Kẻ AH vuông góc OM tại H, tia AH cắt đường tròn (O) tại B. Chứng minh tam giác ABM cân..
c/ Chứng minh MB là tiếp tuyến của đường tròn (O)
Cho đường tròn ( O ; R ) và điểm M nằm ngoài đường tròn sao cho OM= 2R. Từ M kẻ tiếp tuyến MB ( B là các tiếp điểm ). Vẽ dây BC vuông góc với OM tại H
a) C/m: BH = HC và OH là tia phân giác của góc BOC
b) C/m MB = MC và OC vuông góc với CM
c) Tính diện tích tứ giác OBMC theo R
Cho đường tròn (O;R) và một điểm M ở ngoài đường tròn(O;R).Trên dường thẳng vuông góc với OM tại M lấy một điểm N bất kỳ.Từ N vẽ hai tiếp tuyến NA,NB đến đường tròn (O) (A,B là các tiếp điểm) a/ Chứng minh :5 điểm O,A,B,M,N cùng nằm trên một đườg tròn b/Gọi I là giao điểm của AB với OM.Tính tích OI.OM theo R c/Từ I kẻ đường thẳng vuông góc với OM cắt (O) tại K.Cm:MK là tiếp tuyến của (O) d/AM cắt đường tròn (O) tại C (C khác A).Chứng minh :4 điểm O,A,I,C cùng nằm trên một đường tròn