Cho đường tròn tâm O bán kính R trên 1 dây BC cố định. Trên đường tròn lấy 1 điểm A, A không trùng với B và C. Gọi G là trọng tâm của tam giác ABC.CMR Khi A di động trên đường tròn tâm O thì G cũng di động trên 1 đường tròn cố định
Cho đường tròn (O;R) và dây Bc cố định không đi qua O. Điểm M đi động trên (O;R). Gọi G là trọng tâm tam giác MBC. CMR: G nằm trên một đường tròn cố định
Cho đường tròn tâm O bán kính R trên 1 dây BC cố định. Trên đường tròn lấy 1 điểm A, A không trùng với B và C. Gọi G là trọng tâm của tam giác ABC.
CMR: Khi A di động trên đường tròn tâm O thì G cũng di động trên 1 đường tròn cố định
làm giúp mk nha mk đag cần rất gấp
Cho đường tròn (O;R) và hai điểm B, C cố định trên đường tròn. Lấy điểm A thay đổi trên đường tròn và gọi H là trực tâm tam giác ABC.
a) Vẽ đường kính BD. CMR: độ dài AH không thay đổi
b) CMR: H luôn nằm trên một đường tròn cố định.
Cho đường tròn (O,R) và một điểm A cố định thuộc đường tròn. Trên tiếp tuyến với đường tròn (O) tại A , lấy một điểm k cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt (O) tại hai điểm B và C (B nằm giữa K và C). Gọi M là trung điểm của BC. 1)CMR 4 điểm A,O,M,K cùng nằm trên một đường tròn ,2)CMR KA bình phương =KB.KC=KO bình phương - R bình phương
Cho ba điểm A, B, C cố định nằm trên một đường thẳng và theo thứ tự đó. Đường tròn (O) thay đổi luôn đi qua B và C. Từ A kẻ các tiếp tuyến AM và AN với đường tròn (O) (M, N là hai tiếp điểm). Đường thẳng MN cắt AO tại H, gọi E là trung điểm của BC. Chứng minh rằng khi đường tròn (O) thay đổi, tâm của đường tròn ngoại tiếp tam giác OHE nằm trên một đường tròn cố định
Cho đường tròn O; R và điểm A cố định thuộc đường tròn. Trên tiếp tuyến với O tại A lấy một điểm K cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt O tại hai điểm B và C (B nằm giữa C và K). Gọi M là trung điểm của BC. a). Chứng minh bốn điểm A,O,M,K cùng thuộc một đường tròn. b). Vẽ đường kính AN của đường tròn 0 . Đường thẳng qua A và vuông góc với BC cắt MN tại H . Chứng minh tứ giác BHCN là hình bình hành. c). Chứng minh H là trực tâm tam giác ABC. d). Khi đường thẳng d thay đổi và thỏa mãn điều kiện của đề bài, điểm H di động trên đường
Cho (O;R) và điểm A cố định ngoài (O). Qua A kẻ tiếp tuyến AM, AN với (O). (d) qua A cắt (O) tại B, C ( AB < AC ). I là trung điểm của BC. CMR : Khi (d) thay đổi thì trọng tâm G của tam giác MBC nằm trên 1 đường tròn cố định.
Cho (O;R) và điểm A cố định ngoài (O). Qua A kẻ tiếp tuyến AM, AN với (O). (d) qua A cắt (O) tại B, C ( AB < AC ). I là trung điểm của BC. CMR : Khi (d) thay đổi thì trọng tâm G của tam giác MBC nằm trên 1 đường tròn cố định.