Cho đường tròn (o) với dây BC cố định (không là đường kính) và điểm A thay đổi vị trí trên cung lớn BC sao cho AC>AB và AC>BC.
Gọi D là trung điểm của cung nhỏ BC.Các tiếp tuyến (O) tại D,C cắt nhau tại E. Gọi P,Q lần lượt là giao điểm của các cặp đường thẳng AB với CD; AD với CE.
a, Cm DE//BC
b, Cm tứ giác PECQ nội tiếp
c, Gọi giao điểm của các dây AD và BC là F, cmr 1/CE+1/CQ=1/CF
(O;R) và dây BC . Lấy A thuộc cung lớn BC sao cho AC>AB ,AC>BC . Gọi D là điểm chính giữa cung BC nhỏ .Ccs tiếp tuyến của đường tròn tâm O tại D và C cắt nhau tại E . Gọi P , Q lần lượt là giao điểm của AB với CD và AD với CE
a, Chứng minh DE// BC
b, tứ giác PACQ nội tiếp
c, Gọi giao của AD và BC là F chứng minh 1/CE=1/CQ+1/CF
Cho ( O;R ) có dây BC cố định , gọi d là đường thằng qua O và vuông góc với BC ; tiếp tuyến B tại ( O ) cắt đường thẳng d tại A . Gọi M là điểm bất kì thuộc cung nhỏ BC ; từ M kẻ MD , ME , MF theo thứ tự vuông góc với AB , BC , CA tại D , E , F
a . Chứng minh AC là tiếp tuyến ( O;R ) và MDBE , MECF là các tứ giác nội tiếp
b . Cho BC = R\(\sqrt{3}\). Tính diện tích hình viên phân tạo thành bởi cung nhỏ BC và dây BC
c . Chứng minh ME2 = MD.MF
d . Gọi P là giao điểm của MB và DE , Q là giao điểm của MC và EF . Đường tròn ngoại tiếp tam giác MDP cắt đường tròn ngoại tiếp tam giác MFQ tại điểm thứ hai là N . Chứng minh rằng đường thẳng MN đi qua trung điểm BC
Cho đường tròn (O;R) có AB là một dây cố định (AB < 2R) . Trên cung lớn AB lấy 2 điếm C ; D sao cho AD // BC
a) Kẻ các tiếp tuyến với đường tròn (O;R) tại A ; D , chúng cắt nhau tai I . Chứng minh AODI là tứ giác nội tiếp .
b) Gọi M là giao điểm của AC và BD . Chứng minh rằng điểm M thuộc đường tròn cố định khi C ; D di chuyển trên cung lớnn AB sao cho AD //BC
c) Cho biết AB = R và BC = R . Tính điện tích tứ giác ABCD theo R
Cho BC là dây cung cố định của đường tròn (O;R), A là điểm trên cung lớn BC sao cho AB<AC. Tia phân giác Ax của góc \(\widehat{BAC}\)cắt BC tại D và cắt đường tròn (O) tại E, gọi K là giao điểm của OE và BC. Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC kéo dài tại M, vẽ tiếp tuyến MF của đường tròn (O) với F là tiếp điểm.
c. Chứng minh rằng tam giác MDF cân và giao điểm của DF với OE thuộc đường tròn (O)
d. Cho biết A di chuyển trên cung lớn BC sao cho AB < AC. CMR : BF + CF < 2BE
Các bạn giúp mình giải bài này với ạ. Xin trân trọng cảm ơn !!!
Cho đường tròn (O;R) đường kính AB. Gọi Ax và By là hai tiếp tuyến của (O); C là một điểm trên đường tròn (O), D là điểm nằm giữa A và O. Đường vuông góc với CD tại C cắt Ax và By lần lượt tại E và F.
a. Chứng minh: Tứ giác AECD nội tiếp.
b. Gọi M là giao điểm của AC và DE, N là giao điểm của BC và DF. Chứng minh: MN song song với AB.
c. Tính tổng diện tích hai hình viên phân giới hạn bởi các cung nhỏ AC và BC với các dây AC và BC của (O) khi AC=R?
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng
Cho đường tròn (O) có dây cung BC cố định. Gọi M là điểm chính giữa cung nhỏ BC, điểm A nằm trên cung lớn BC sao cho AC≥AB. Đường AM cắt tiếp tuyến tại C của (O) tại H, cắt BC tại I. Đường thẳng AB cắt CM tại K.
1, Chứng minh tứ giác ACHK nội tiếp
2, Chứng minh HK // BC và AB.AC= IB.IC + IA^2
Mọi người giúp mình ý 2 với ạ. Mình cảm ơn
Cho (O;R) và dây BC.Lấy điểm A thuộc cung lớn BC sao cho AC>BC;AC>BC.Gọi D là điểm chính giữa của cung nhỏ BC.Các tiếp tuyến của (O) tại C và D cắt nhau tại E.Gọi P và Q lần lượt là giao điểm của các đường thẳng AB với CD; AB và CE
a) C/m DE//BC
b) C/m tứ giác PACQ nội tiếp
c) Gọi giao điểm của AD,BC là F . C/m 1/CE= 1/CQ+1/CF