cho đường tròn (O) và hai điểm B, C cố định trên đường tròn (BC không đi qua O), A là điểm di động trên cung lớn BC sao cho ABC là tam giác nhọn. Đường tròn tam I nội tiếp tam giác ABC tiếp xúc với hai cạnh AB, AC tương ứng tại M,N. gọi Q là điểm chính giữa cung nhỏ BC của đường tròn (O), Plà giao điểm của AQ và BC, E là giao điểm của CI với MN. 1,chứng minh tam giác BIQ cân 2, chứng minh 4 điểm B,I,M,E cùng nằm trên một đường tròn
1: I là tâm đường tròn nội tiếp
QB=QC
=>QB=QI
=>ΔQBI cân tạiQ
2: Xet ΔAMI và ΔANI có
góc AMI=góc ANI
góc MAI=góc NAI
AI chung
=>ΔAMI=ΔANI
=>góc AMN=góc ANM=90 độ-1/2*góc ABC và AM=AN
=>góc EMB=góc NMB=90 độ+1/2*gócc ABC
góc IBC=1/2*góc ABC
góc ICB=góc ACB/
=>góc EIB+góc EMB=180 độ
=>ĐPCM