Cho đường tròn O; R và điểm A cố định thuộc đường tròn. Trên tiếp tuyến với O tại A lấy một điểm K cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt O tại hai điểm B và C (B nằm giữa C và K). Gọi M là trung điểm của BC. a). Chứng minh bốn điểm A,O,M,K cùng thuộc một đường tròn. b). Vẽ đường kính AN của đường tròn 0 . Đường thẳng qua A và vuông góc với BC cắt MN tại H . Chứng minh tứ giác BHCN là hình bình hành. c). Chứng minh H là trực tâm tam giác ABC. d). Khi đường thẳng d thay đổi và thỏa mãn điều kiện của đề bài, điểm H di động trên đường
a: ΔOBC cân tại O
mà OM là đường trung tuyến
nên OM\(\perp\)BC tại M
Xét tứ giác KAOM có
\(\widehat{OAK}+\widehat{OMK}=90^0+90^0=180^0\)
=>KAOM là tứ giác nội tiếp
=>K,A,O,M cùng thuộc một đường tròn
b: AH\(\perp\)BC
OM\(\perp\)BC
Do đó: AH//OM
Xét ΔNAH có
O là trung điểm của NA
OM//AH
Do đó: M là trung điểm của NH
Xét tứ giác BHCN có
M là trung điểm chung của BC và HN
=>BHCN là hình bình hành
c: Xét (O) có
ΔACN nội tiếp
AN là đường kính
Do đó: ΔACN vuông tại C
=>CN\(\perp\)CA
BHCN là hình bình hành
=>BH//CN
Ta có: BH//CN
CN\(\perp\)CA
Do đó: BH\(\perp\)AC
Xét ΔABC có
BH,AH là các đường cao
BH cắt AH tại H
Do đó: H là trực tâm của ΔABC