a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
Xét ΔOBA vuông tại B có cos BOA=OB/OA=1/2
nên góc BOA=60 độ
Xét ΔOBK có OK=OB và góc BOK=60 độ
nên ΔOBK đều
b: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc EOC=30 độ
Xét ΔOCE vuông tại C có tan EOC=EC/OC
=>EC/R=tan30
=>\(EC=R\cdot\dfrac{\sqrt{3}}{3}\)
\(AE=AC+CE=R\left(\dfrac{\sqrt{3}}{3}+\sqrt{3}\right)=\dfrac{4\sqrt{3}}{3}\cdot R\)