Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho đường tròn (O) bán kính R, lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Vẽ 2 tiếp tuyến AB và AC của (O) (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.

a) Cm OA ⊥ BC tại H. Tính góc BOA và cạnh OH.

b) Cho OA cắt (O) tại điểm M. Cm M là tâm đường tròn nội tiếp ∆ABC.

c) Vẽ đường tròn tâm M nội tiếp ∆ABC, đường tròn (M) cắt đoạn thẳng MB tại K. Đường thẳng OK cắt BC và BA lần lượt tọa I và N. Cm MN là tiếp tuyến (O).

d) Cm MI và AK cắt nhau tại 1 điểm thuộc (O)

Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:43

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot2R=R^2\)

=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)

\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)

mà \(\widehat{OBM}=\widehat{OMB}\)

nên \(\widehat{ABM}=\widehat{HBM}\)

=>BM là phân giác của góc ABH

Xét ΔABC có

BM,AM là các đường phân giác

BM cắt AM tại M

Do đó: M là tâm đường tròn nội tiếp ΔABC


Các câu hỏi tương tự
Mynnie
Xem chi tiết
Quang vo cong
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Song Eun Yong
Xem chi tiết
phạm ngọc nhi
Xem chi tiết
Mai Quỳnh Anh
Xem chi tiết
Mostost Romas
Xem chi tiết
Chu Hồng Trang
Xem chi tiết
Nguyễn Thị Ngọc
Xem chi tiết