Xét ΔONM vuông tại N có
\(OM^2=ON^2+NM^2\)
hay NM=4cm
Xét ΔONM vuông tại N có
\(OM^2=ON^2+NM^2\)
hay NM=4cm
Cho đường tròn (O; 3 cm) và điểm M cách O một khoảng bằng 5 cm. Từ M kẻ tiếp tuyến MN và cát tuyến MAB bất kì (A nằm giữa M và B). Gọi I là trung điểm của AB. a) Tính độ dài MN và số đo góc M O N. b) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.
Cho đường tròn (O; 3 cm) và điểm M cách O một khoảng bằng 5 cm. Từ M kẻ tiếp tuyến MN và cát tuyến MAB bất kì (A nằm giữa M và B). Gọi I là trung điểm của AB. a) Tính độ dài MN và số đo góc M O N. b) Chứng minh bốn điểm M, N, O, I cùng thuộc một đường tròn.
cho điểm A ở ngoài đường tròn (O;R). Kẻ tiếp tuyến AB (B là tiếp điểm ) và cát tuyến AMN ( M nằm giữ A và N ). Gọi I là trung điểm của MN . Qua B kẻ dây cung vuông góc vs OA tại H và cắt ( O) tại C
a, Cho R= 6cm , OA = 10cm. Tính độ dài AB
b, Chứng minh : 4 điểm A, B , I,O cùng thuộc 1 đường tròn . Xác định tâm bán kính của đường tròn đó .
Từ điểm A ngoài đường tròn tâm O . Kẻ tiếp tuyến AB(B là tiếp điểm ) và cát tuyến AMN (M nằm giữa A và N)
A) CM AB^2=AM.AN
B) Phân giác MBN cắt dây MN tại E và cung MN tại K.CM tam giác ABE cân
C) Gọi I là trung điểm của MN . CM I;O;K thẳng hàng
từ điểm M nằm ngoài đường tròn(O) ,vẽ 2 tiếp tuyến MC,MDcủa (O) (C,D là 2 tiếp điểm),kẻ một cát tuyến MAB vứi (O) sao cho điểm A nằm giữa 2 điểm M,B và tâm O nằm trong góc BMC. gọi I là trung điểm của dây AB
a. c/m 5 điểm O,I,D,M,C cùng thuộc một đtr
b. gọi H là giao điểm của OM và CD. c/m MH.MO=MA.MB
c.tia OI cắt tiếp tuyến A của đtr (O) tại N.c/m 3 điểm N,C,D thẳng hàng
Bài 1. Cho đường tròn (o) và điểm M nằm ngoài (o). Qua M kẻ 2 tiếp tuyến MA, MB với (o), kẻ cát tuyến MPQ không đi qua tâm O, P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB,AQ lần lượt tại R và S. Gọi N là trung điểm của PQ
a. Cmr 5 điểm M,A,N,O,B cùng thuộc 1 đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
b. Cmr PRNB là tứ giác nội tiếp.
c. PR=RS
Bài 2. Cho (O,R) và (O',R') (R>R') cắt nhau tại A và B. Vẽ tiếp tuyến chung MN của 2 đường tròn, đường thẳng AB cắt MN tại I (B nằm giữa A và I). Cmr
a. ^BMN =^MAB
b. IN^2=IA.IB từ đó suy ra I là trung điểm của MN
c. Đường thẳng MA cắt đường thẳng NB tại Q, NA cắt MB tại P. Cmr MN//PQ
Từ một điểm M ở bên ngoài đường tròn (O;6cm) kẻ hai tiếp tuyến MN, MP với đường tròn (N;P€(O)) và cát tuyến MAB của (O) sao cho AB=6cm a, chứng minh: OPMN là tứ giác nội tiếp b, tính độ dài đoạn thẳng MN biết MO=10cm c, gọi H là trunh điểm đoạn thẳng AB chứng minh MON=MHN d, tính diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của hình tròn tâm O đã cho
Từ điểm A nằm ngoài đường tròn (O),kẻ tiếp tuyến AM với đường tròn(M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ cát tuyến ABC với đường tròn( điểm B nằm giữa A và C). a)CM: AN là tiếp tiếp tuyến. b)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. CM:OI.OK=ON.ON(ON bình) và 3 điểm K,H,N thẳng hàng
Từ một điểm M ở bên ngoài đường tròn (O ; 6cm) kẻ hai tiếp tuyến MN; MP với đường tròn (N; P € (O)) cắt tuyến MAB của O sao cho AB = 6 cm a, chứng minh OPMN là tứ giác nội tiếp b, tính độ dài đoạn thẳng MN biết MO = 10 CM C, gọi h là trung điểm đoạn thẳng AB. So sánh góc MO^N với góc và MH^N d, diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của đường tròn tâm O đã cho