Bài này hôm qua mình giải rồi. bạn xem bài những bài giải lớp 9 ngày hôm qua sẽ có nhé
Bài này hôm qua mình giải rồi. bạn xem bài những bài giải lớp 9 ngày hôm qua sẽ có nhé
cho đường tròn đường kính AB=2, bên trong đường tròn vẽ bất kỳ 4 đoạn thẳng có độ dài bằng 1. chứng minh rằng luôn tồn tại một đường thẳng vuông góc hoặc song song vs AB và giao ít nhất 2 trong 4 đoạn thẳng đã cho
Bên trong đường tròn có bán kính là 2000 có 8000 đoạn thẳng có độ dài là 1. Chứng minh rằng : Có thể dựng được một đường thẳng d hoặc là song song hoặc là vuông góc với một đường thẳng \(l\) cho trước, sao cho d cắt ít nhất là hai đoạn thẳng đã cho.
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.
lm hộ minh ý 4 nhá
Cho đường tròn (O; R) đường kính AB và điểm C bất kỳ thuộc đường tròn (C khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E.
1. Chứng minh bốn điểm A, E, C, O cùng thuộc một đường tròn.
2. Chứng minh BC.BD = 4R2 và OE song song với BD.
3. Đường thẳng kẻ qua O và vuông góc với BC tại N cắt tia EC ở F. Chứng minh BF là tiếp tuyến của đường tròn (O;R).
4. Gọi H là hình chiếu của C trên AB, M là giao của AC và OE. Chứng minh rằng khi điểm C di động trên đường tròn (O; R) và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua một điểm cố định.
Giúp mình
Cho hình vuông có độ dài bằng 1m , trong hình vuông đó đặt 55 đường tròn , mỗi đường tròn có đường kính \(\frac{1}{9}\)m .
Chứng minh rằng tồn tại 1 đường thẳng giao ít nhất bảy đường tròn
cho tam giác ABC nội tiếp đường tròn (O) có ba góc <CAB, <ABC, <BCA đều là góc nhọn. VẼ đường kính AD của đường tròn (O). gọi E, k lần lượt là giao điểm của hai đường thẳng AC và BO, AC và BD. tiếp tuyến của đường tròn (O) tại B cắt đường thẳng CD tại điểm F.
a) chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b) chứng minh EF song song với AB. chứng minh DE vuông góc vs FK.
Câu 1: Cho hai đường thẳng (d1) : y=x-3 và (d2) : y= -2x+3. Tìm tọa độ giao điểm của d1 và d2
Câu 2: Viết phương trình đường thẳng (d) biết đường thẳng (d) song song với đường thẳng (d1) : y=2x+1 và (d) cắt đường thẳng (d2) : y= -4x+5 tại một điểm có tung độ bằng -3
Câu 3: Cho đường tròn tâm O có bán kính 5cm. Lấy điểm C tùy ý thuộc đường tròn, gọi H là điểm thuộc đoạn OC sao cho HC=2cm. Qua điểm H, kẻ dây AB của tròn (O) sao cho AB vuông góc với OC. Tính độ dài dây AB
1.Cho tam giác ABC có AD là tia phân giác trong của góc A. Quá D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.
a) Tứ giác AEDF là hình gì? Vì Sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh rằng: MN//EF.
2. Cho hai đường tròn (O;R) và(O';R') tiếp xúc trong với nhau tại A, (R>R'). Qua điểm B bất kỳ trên(O') vẽ tiếp tuyến với (O') cắt (O) tại hại điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN vuông góc với OC
b) AC là tia phân giác của góc MAN