Ta có: y = 0,5x – 1,5. (d1)
Đường thẳng (d) và ( d 1 ) khi m – 2 ≠ 0,5, còn n lấy giá trị tùy ý. Suy ra (d) cắt ( d 1 ) khi m ≠ 2,5 còn n tùy ý.
Trả lời: (d) cắt ( d 2 ) khi m ≠ 2,5 còn n tùy ý.
Ta có: y = 0,5x – 1,5. (d1)
Đường thẳng (d) và ( d 1 ) khi m – 2 ≠ 0,5, còn n lấy giá trị tùy ý. Suy ra (d) cắt ( d 1 ) khi m ≠ 2,5 còn n tùy ý.
Trả lời: (d) cắt ( d 2 ) khi m ≠ 2,5 còn n tùy ý.
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) song song với đường thẳng y = (-3)/2x + 1/2;
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) trùng với đường thẳng y = 2x – 3.
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - 2 và cắt trục hoành tại điểm có hoành độ 2 + 2
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) đi qua hai điểm A(-1;2), B(3; -4);
1) a) Tính giá trị của biểu thức \(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{3}\)
b) Tìm các giá trị của tham số m để hai đường thẳng (d):y=(m+2).x-m (m≠-2) và (d'):y = -2x-2m+1 cắt nhau.
c) Tìm hệ số góc của đường thẳng (d):y=(2m-3)x+m ( với m≠\(\dfrac{3}{2}\)) biết (d) đi qua điểm A (3;-1)
Cho hàm số y = 2x + 2 (d) và (d’) y = (2 – m)x (với m khác 2). Tìm các giá trị của m để đường thẳng (d’) cắt đường thẳng (d) tại điểm có hoành độ âm.
Cho parabol (p):y=-2x^2 và đường thẳng (d):y=(m+1)x-m-3 (m là tham số).tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt (p) tại điểm có hoành độ =-1
Cho đường thẳng (d): y= (m - 2)x+n (m \(\ne\) 2)
Tìm giá của m và n trong mỗi trường hợp sau:
a) (d) đi qua 2 điểm A(-1;2) và B(3;-4)
b) (d) cắt trực tung tại điểm có tung độ \(=1-\sqrt{2}\) và cắt trục hoành tại điểm có hoành độ \(=2+\sqrt{2}\)
c) (d) cắt đường thẳng \(y=-\frac{3}{2}x+\frac{1}{2}\)
d) (d) trùng với đường thẳng y= 2x-3
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.