1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)
2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau
b
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM