Cho hàm số y=f(x). Hàm số y=f' (x) có đồ thị như hình vẽ dưới đây
Có bao nhiêu giá trị của tham số m để hàm số y=f( x 2 - m ) có ba điểm cực trị
A. 4
B. 2.
C. 3
D. 1
Để tiết kiệm vật liệu nhất thì S t p nhỏ nhất ⇔ πR 2 = π R ⇒ R = 1 ⇒ h = 2 Cho đồ thị hàm số y=f(x) như hình vẽ dưới đây:
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f ( x - 2 ) - m 4 có 7 điểm cực trị.
A. 1
B. 2
C. 3
D. 4
Cho đồ thị hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = f x + 100 + m 2 có 5 điểm cực trị?
A. 0
B. 1
C. 2
D. 4
Cho hai hàm đa thức y = f(x), y = g(x) có đồ thị là hai đường cong ở hình vẽ. Biết rằng đồ thị hàm số y = f(x) có đúng một điểm cực trị là A, đồ thị hàm số y = g(x) có đúng một điểm cực trị là B và A B = 7 4 . Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-5;5) để hàm số y = f ( x ) - g ( x ) + m có đúng 5 điểm cực trị?
A. 1
B. 3
C. 4
D. 6
Cho hàm số y=f(x) có đồ thị như hình vẽ bên dưới: Tìm tất cả các giá trị của tham số m để đồ thị hàm số h ( x ) = f 2 ( x ) + f ( x ) + m có đúng 3 điểm cực trị.
A. m ≤ 1
B. m > 1 4
C.m<1
D. m ≥ 1 4
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f ( x - 1 ) - m - 1 có 3 điểm cực trị?
A. -1<m<5
B. - 1 ≤ m ≤ 5
C. m ≥ - 1 hoặc m ≤ - 5
D. m>-1 hoặc m<-5
Cho hàm số y = f ( x ) có đồ thị như hình vẽ bên dưới. Tìm tất cả các giá trị thực của tham số m để hàm số g x = f x + m có 5 điểm cực trị
A. m < -1
B. m > -1
C. m > 1
D. m < 1
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f 2 ( x ) - ( m + 5 ) f ( x ) + 4 m + 4 = 0 có 7 nghiệm phân biệt?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f x có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số g x = f x + 2018 + m 2 có 5 điểm cực trị?
A. 1
B. 2
C. 4
D. 5