Cho hàm số y=f(x) có đồ thị hình bên thì công thức tính diện tích hình phẳng phần tô đậm trong hình là:
A. S = ∫ a b f x d x
B. S = ∫ a 0 f x d x + ∫ 0 b f x d x
C. S = ∫ a 0 f x d x − ∫ 0 b f x d x
D. S = ∫ a 0 f x d x − ∫ 0 b f x d x
Cho hàm số y = f(x) có đồ thị hình bên thì công thức tính diện tích hình phẳng phần tô đậm trong hình là:
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y =f(x) trục hoành và hai đường thẳng x = a và x =b được tính theo công thức nào dưới đây ?
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị (C): y=f(x), trục hoành và hai đường thẳng x=a, y=b (như hình vẽ dưới đây). Giả sử S D là diện tích của hình phẳng D. Chọn công thức đúng trong các phương án dưới đây
A. S D = − ∫ a 0 f x d x + ∫ 0 b f x d x .
B. S D = ∫ a 0 f x d x − ∫ 0 b f x d x .
C. S D = ∫ a 0 f x d x + ∫ 0 b f x d x .
D. S D = − ∫ a 0 f x d x − ∫ 0 b f x d x .
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị (C): y=f(x), trục hoành và hai đường thẳng x=a, y=b (như hình vẽ dưới đây). Giả sử S D là diện tích của hình phẳng D. Chọn công thức đúng trong các phương án dưới đây
A. S D = − ∫ a 0 f x d x + ∫ 0 b f x d x .
B. S D = ∫ a 0 f x d x − ∫ 0 b f x d x .
C. S D = ∫ a 0 f x d x + ∫ 0 b f x d x .
D. S D = − ∫ a 0 f x d x − ∫ 0 b f x d x .
Cho đồ thị y=f(x) như hình vẽ sau đây. Biết rằng ∫ - 2 1 f ( x ) d x = a và ∫ 1 2 f ( x ) d x = b . Tính diện tích S của phần hình phẳng được tô đậm.
Cho hàm số f(x) liên tục trên R diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = f ( x ) trục hoành và hai đường thẳng x=a;x=b (a<b) được tính theo công thức
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a; x = b Diện tích S của hình phẳng D được tính theo công thức
Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b (a<b) được tính theo công thức: