Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho đồ thị hàm số C : y = 1 x ;  điểm M có hoành độ x M = 2 − 3 thuộc (C). Biết tiếp tuyến của (C) tại M lần lượt cắt Ox, Oy tại A, B. Tính diện tích tam giác OAB.

A. S Δ O A B = 1.

B. S Δ O A B = 4.

C. S Δ O A B = 2.

D. S Δ O A B = 2 + 3 .

Cao Minh Tâm
6 tháng 1 2017 lúc 3:44

Đáp án C

- Viết phương trình tiếp tuyến với C tại M.

+ Phương trình tiếp tuyến với đồ thị hàm số  y = f x   tại điểm  M  x 0 ; f  x 0   :y=f ' x o  x-x o  +f x o .

- Tìm tọa độ hai giao điểm A,B của tiếp tuyến với các trục tọa độ Ox, Oy.

- Diện tích tam giác OAB là: S Δ O A B = 1 2 O A . O B .

  y = 1 x ⇒ y ' = 1 x 2 . Ta có:

x M = 2 − 3 ⇒ y M = 1 2 − 3 = 2 + 3 ⇒ M  2- 3 ; 2 + 3 .

Phương trình tiếp tuyến với C tại M  2- 3 ; 2 + 3  là:

d : y = − y '  x M  x-x M + y M = − 1 2 − 3 2 x − 2 + 3 + 2 + 3 = − 2 + 3 2 x + 4 + 2 3 .

Cho  x = 0 ⇒ y = 4 + 2 3 ⇒ B 0;4+2 3

Cho

  y = 0 ⇒ x = 4 + 2 3 2 + 3 = 2 2 + 3 = 4 − 2 3 ⇒ A 4 − 2 3 ; 0

Vậy  S O A B = 1 2 O A . O B = 1 2 4 + 2 3 4 − 2 3 = 2   .