Cho đường tròn tâm O bán kính r, điểm P cố định trên đường tròn, điểm M di chuyển trên đường tròn.
Tìm vị trí điểm M sao cho độ dài PM:
a, Nhỏ nhất b, Lớn nhất
Cho đường tròn (O) có bán kính R = 2a và điểm A nằm ngoài đường tròn (O). Kẻ đến (O) hai tiếp tuyến AM và AN (với M, N là các tiếp điểm)
a) Chứng minh bốn điểm A,M,N,O cùng thuộc một đường tròn (C). Xác định tâm và bán kính của đường tròn (C).
b) Tính diện tích S của tứ giác AMON theo a, biết OA = 3a
c) Gọi M' là điểm đối xứng của M qua O và P là giao điểm của AO vào (O), P nằm ngoài đoạn OA. Tính sin góc MPN
Cho đường tròn tâm O bán kính R, đường kính AB cố định. C thuộc OA ( C khác O, A ). M thuộc đường tròn tâm O trên
a) Tìm vị trí của M trên đường tròn để CM lớn nhất và nhỏ nhất
b) Gọi N là 1 điểm thuộc đường tròn ( O, R ) sao cho góc MCN = 90* . Gọi K là trung điểm của MN. CMR: Khi M di chuyển thì KO2 + KC2 có đại lượng không đổi
c) CMR: Khi M di chuyển thì K thuộc 1 đường tròn cố định
Cho đường tròn(O;R) đường kính AB và C là điểm nằm trên đường tròn. Gọi M là điểm đối xứng với A qua C
a)Hãy xác định vị trí điểm C trên (O;R) sao cho AM lớn nhất
b)Cho biết AM= 2R\(\sqrt{3}\). Hãy tìm số đo góc A
c)CMR M thuộc 1 đươngf tròn cố định khi C chạy trên (O;R)
cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm ) . Tia Mx nằm giữa MA và MO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ) . Gọi I là trung điểm của dây CD , kẻ AH vuông góc với MO tại H
a) Tính OH , OM theo R
b) Chứng minh : bốn điểm M ,A ,I ,O cùng thuộc một đường tròn
c) Gọi K là giao điểm của OI với HA . Chứng minh KC là tiếp tuyến đường tròn (O:R)
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
chỉ cần hình thôi
cho đường tròn tâm O bán kính R và dây AB cố định (AB<2R). Gọi I là điểm chính giữa cung lớn AB, K là trung điểm dây AB, M là điểm bất kì trên cung nhỏ BI (M khác B,I). Qua A kẻ đường vuông góc với MI tại H cắt tia BM tại C. Tìm vị trí điểm M để chu vi tam giác AMC lớn nhất
Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại M bất kì trên đường tròn (O) cắt các tiếp điểm tại A và B lần lượt tại C và D. Tìm vị trí của M để chu vi tam giác COD là nhỏ nhất
Cho nửa đường tròn (O) có tâm O và đường kính AB=2R. Gọi M, N là hai điểm di động trên nửa đường (O) sao cho M thuộc cung AN và tổng khoảng cách từ A, B đến MN bằng \(R\sqrt{3}\). Gọi I là giao điểm của các đường thẳng AN và BM; K là giao điểm của AM và BN.
a) Chứng minh K, M, I, N cùng thuộc một đường tròn (C).
b) Tính độ dài MN và bán kính đường (C) theo R
c) Xác định vị trí M, N sao cho tam giác KAB có diện tích lớn nhất. Tính giá trị lớn nhất đó theo R.