(α) ⊥ a →
Δ ⊥ a →
⇒ Δ song song hoặc nằm trong (α).
Mà Δ và (α) cùng đi qua A
⇒ Δ ⊂ (α)
Δ cắt d ⇒ Δ cắt d tại M
⇒ Δ chính là đường thẳng AM.
(α) ⊥ a →
Δ ⊥ a →
⇒ Δ song song hoặc nằm trong (α).
Mà Δ và (α) cùng đi qua A
⇒ Δ ⊂ (α)
Δ cắt d ⇒ Δ cắt d tại M
⇒ Δ chính là đường thẳng AM.
Cho điểm A(-1; 2; -3), vectơ a → = (6; -2; -3) và đường thẳng d có phương trình: x = 1 + 3 t y = - 1 + 2 t z = 3 - 5 t Viết phương trình mặt phẳng (α) chứa điểm A và vuông góc với giá của a → .
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
A . x - 3 2 = y 2 = z + 5 - 1
B . x - 1 = y + 2 3 = z 4
C . x + 2 3 = y 1 = z - 1 - 1
D. Tất cả sai
Trong không gian Oxy cho điểm A(-1;2;3), véc-tơ u → 6 ; − 2 ; − 3 và đường thẳng d: x − 4 3 = y + 1 2 = z + 2 − 5 . Viết phương trình đường thẳng ∆ đi qua A, vuông góc ới giá của u → và cắt d
A. x − 1 2 = y + 1 − 3 = z − 3 6
B. x − 1 2 = y − 5 3 = z + 1 2
C. x − 1 1 = y + 4 − 3 = z − 5 4
D. x − 2 3 = y − 5 3 = z − 1 4
Trong không gian Oxyz, cho điểm A (1; -1; 1) và hai đường thẳng ∆ : x - 1 2 = y 1 = z - 3 - 1 , ∆ ' : x 1 = y + 1 - 2 = z - 2 1 .
Phương trình đường thẳng đi qua điểm A và cắt cả hai đường thẳng Δ, Δ' là:
Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: x = - 3 + 2 t y = 1 - t z = - 1 + 4 t
Viết phương trình đường thẳng ∆ đi qua A , cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz cho hai điểm A ( 1 ; - 1 ; 1 ) , B ( - 1 ; 2 ; 3 ) và đường thẳng ∆ : x + 1 - 2 = y - 2 1 = z - 3 3 . Phương trình đường thẳng d đi qua điểm A, đồng thời vuông góc với hai đường thẳng AB và Δ là
A. x - 7 1 = y - 2 - 1 = z - 4 1
B. x - 1 7 = y + 1 2 = z - 1 4
C. x + 1 7 = y - 1 - 2 = z + 1 4
D. x + 1 7 = y - 1 2 = z + 1 4
Viết phương trình đường thẳng d đi qua điểm A(-4;-5;3) và cắt cả hai đường thẳng d 1 : x + 1 3 + y + 3 - 2 = z - 2 - 1 và d 2 : x - 2 2 = y + 1 3 = z - 1 - 5
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).