Cho:
\(\dfrac{x}{a}\)+\(\dfrac{y}{b}\)+\(\dfrac{z}{c}\)=1
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0
Tính \(\dfrac{x^2}{a^2}\)+\(\dfrac{y^2}{b^2}\)+\(\dfrac{z^2}{c^2}\)
Cho x,y,z khác 0 và x+y+z=0 . Tính:
A=\(\dfrac{x^2}{y^2+z^2-x^2}+\dfrac{y^2}{z^2+x^2-y^2}+\dfrac{z^2}{x^2+y^2-z^2}\)
cho x,y,z khác 0 thỏa mãn:
x+y+z=xyz và\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
tính M=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Chứng minh:
a) \(x\ne0,y\ne0\) và \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
b) \(x\ne0,y\ne0,z\ne0\) và \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
1) Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
CMR: \(a=b=c=1\)
2) CMR: nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
3) Cho \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Chứng minh rằng:
Nếu \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cx\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\).
Viết các biểu thức sau dưới dạng tổng :
a, (x-y+z)(x-y-z)
b,(\(\dfrac{1}{2}\)+y-z)(\(\dfrac{1}{2}\)x+y+z)
Cho x, y, z khác 0 và x + y + z khác 0. CMR:
Nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\)
cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính A=\(\dfrac{x+y}{z}+\dfrac{y+z}{z}+\dfrac{z+x}{y}\)