Cho \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\).Tính giá trị biểu thức C=\(\dfrac{5a^2+3b^2}{10a^2-3b^2}\)
Tính giá trị biểu thức:: B=5a^2+3b^2 / 10a^2-3b^2 với a/3=b/5
Bài 1: Đơn giản biểu thức rồi tìm giá trị
a, 3(2a-1)+5(3-a) tại a=\(\dfrac{-3}{2}\)
b, 25x-4(3x-1)+7(5-2x) tại x=2,1
c, 12(2-3b)+35b-9(b+1) tại b=\(\dfrac{1}{2}\)
d,4a\(^2\)-2(10a-1)+4a(2-a\(^2\)) tại a= -0,2
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cho 2 số a;b thỏa mãn
\(\dfrac{3a - 2b}{a - 3b} = \dfrac{3a + 2b}{2a + b} \) Hãy tính giá trị biểu thức P = \(\dfrac{a^2 - b^2}{a^2 + b^2}\)
Bài 1: Tính giá trị của biểu thức
a) A= 2x mũ 2 - \(\dfrac{1}{3}\)y, tại x=2;y=9 b) B= \(\dfrac{1}{2}\)a mũ 2-3b mũ 2 tại a=-2; b=\(\dfrac{-1}{3}\)\(^{ }\)