Giải:
Ta có: AB = AC
AB = AK
AC = AD
=> AD = AK (1)
Xét \(\Delta ABK\) có: \(\widehat{BAK}=\widehat{BAC}+\widehat{A_2}=\widehat{BAC}+90^o\)
Xét \(\Delta ACD\) có: \(\widehat{DAC}=\widehat{BAC}+\widehat{A_1}=\widehat{BAC}+90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{DAC}\left(=\widehat{BAC}+90^o\right)\)(2)
Xét \(\Delta ABK,\Delta ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAK}=\widehat{DAC}\) ( theo (2) )
\(AD=AK\) ( theo (1) )
\(\Rightarrow\Delta ABK=\Delta ACD\left(c-g-c\right)\) ( đpcm )