a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó:ΔKBD=ΔKCE
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó:ΔKBD=ΔKCE
Cho tam giác ABC cân tại A
Bài 4. Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD, H là giao điểm của AK và BC ( H thuộc BC). CMR:
a) BE = CD.
b) tam giác KBD = tam giác KCE.
c) AK là tia phân giác của góc A.
d) AK vuông góc với BC.
e) DE // BC
nhiều bài khó quá mọi người giúp em
\(\Delta ABC\), AB=AC, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của BE và CD. CMR
a) BE=CD
b) \(\Delta BKD=\Delta KCE\)
c) Ak là phân giác \(\widehat{BAC}\)
d) Kéo dài AK cắt BC tại I. CM: \(AI\perp BC\)
Cho Tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB và điểm E thuộc cạnh AC sao cho AD=AE. Gọi K là giao điểm của BE và CD. CM rằng BE=CD; tam giác KBD= KCE; CD<AB+BC/2
Bài 4. Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của BE và CD, H là giao điểm của AK và BC. Chứng minh rằng:
a. BE = CD; b. ΔKBD = ΔKCE; c. AK là phân giác của góc A
d. AK vuông góc với BC; e. DE // BC; f. HA là phân giác của góc DHE.
giúp mình với ạ
Cho tam giác ABC có AB=AC. Trên các cạnh AB và AC lấy các điểm D,E sao cho AD=AE. BE giao với CD tại K
a) C/m BE=CD
b) c/m \(\Delta KBD=\Delta KCE\)
Cho tam giác ABC cân tại A . Điểm D thuộc cạnh AB , điểm E thuộc cạnh AC sao cho AD = AE . Gọi K là giao điểm của BE và CD .CMR. Tam giác KBD= tam giác KCE
cho tam giác abc cân tại a . điểm d thuộc cạnh ab điểm e thuộc cạnh ac sao cho ad=ae . gọi k là giao điểm be và cd
a) be=cd
b) tam giác kbd= tam giác kce
hộ câu này
Bài 20. Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân
Cho tam giác ABC có AB=AC. Trên cạnh AB và AC lấy các điểm D và E sao cho AD=AE. GỌi K là giao điểm của BE và CD. CMR:
a)BE=CD
b)tam giác KBD=tam giác KCE
c)AK là tia phân giác của góc BAC