Hai \(\Delta\)\(ABC\) và \(\Delta MNP\) có \(MP = AC, ABC = MNP = 90^o\). Điều kiện để \(\Delta ABC = \Delta MNP\) là:
A. BA = NP
B. \(\widehat{BAC} = \widehat{NMP}\)
C. BC = MN
D. Cả A, B, C
Cho\(\Delta ABC\)có MN=AP;\(\widehat{M}=\widehat{A}\);BC=NP.Hỏi \(\Delta ABC\)và \(\Delta MNP\)có bằng nhau không?Giải thích?
Cho \(\Delta\)ABC = \(\Delta\)MNP có \(\widehat{N}\)= 60 độ; \(\widehat{P}\)= 80 độ
Tính các góc \(\Delta\)ABC
Tính các góc \(\widehat{A};\widehat{B};\widehat{C}\)của \(\Delta ABC\)biết :
\(\Delta ABC=\Delta ACB=\Delta BCA\)
cho \(\Delta ABC=\Delta MNQ\) biết \(\widehat {\rm{A}}={65^0}\) , \(\widehat {\rm{Q}}={50^0}\)
số đó góc B bằng :
Bài 1:Cho \(\Delta ABC\)cân \(\left(AB=AC;\widehat{A}>90^o\right)\). Trên cạnh BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD = CE. Trên tia đối của CA lấy điểm I sao cho CI = CA
a. C/m
+) \(\Delta ABD=\Delta ICE\)
+) \(AB+AC< AD+AE\)
b. Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB, AI theo thứ tự tại M, N. C/m BM = CN
c. Cmr Chu vi \(\Delta ABC\)nhỏ hơn chu vi \(\Delta AMN\)
Bài 2: Cho tam giác ABC có \(\widehat{A}< 120^o\). Dựng ngoài tam giác ấy các tam giác đều ABD và ACE.
a. Gọi M là giao điểm của BE và CD. Tính \(\widehat{BMC}\)
b. Cmr: MA + MB = MD
c. C/m: \(\widehat{AMC}=\widehat{BMC}\)
d. Áp dụng các kết quả trên giải bài sau: Dựng điểm I trong tam giác NPQ( có các góc nhỏ hơn 1200 ) sao cho: \(\widehat{NIP}=\widehat{PIQ}=\widehat{QIN}\)
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
Cho \(\Delta ABC\) có AB=AC, \(\widehat{B}=\widehat{C}\). Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. Hai đoạn thẳng BD và CE cắt nhau tại I.
CMR:
a) \(\Delta BDC=\Delta CEB\)
b)So sánh \(\widehat{IBE}\)và \(\widehat{ICD}\)
Cho \(\Delta\)ABC,gọi I là trung điểm của BC.Trên tia đối IA lấy điểm M sao cho IA=IM
a)Chứng minh \(\Delta AIB=\Delta MIC\)
b)AC\(//\)BM
c)Giả sử \(\Delta ABC\)có \(\widehat{C}\)=30 độ:\(\widehat{A}\)=2\(\widehat{B}\)
Hãy tính \(\widehat{A}\)và \(\widehat{B}\)