Cho tam giác ABC cân tại A, có O là trung điểm BC và BC=2a. Đường tròn tâm O tiếp xúc với AB, AC lần lượt tại H và T. Qua D trên cung nhỏ HT, kẻ tiếp tuyến với (O) cắt AB và AC ở M và N
a) Xác định tâm I của đường tròn ngoại tiếp tam giác AHT
b) Chứng minh góc MON= góc ABC
c) Tính tích BM.CN theo a
d) Định vị trí của MN sao cho BM+CN đạt giá trị nhỏ nhất
Giup với mình tick cho
Mng giúp e với !!!
Cho △ABC cân tại A, có O là trung điểm của BC và BC= 2a. Đường tròn (O) tiếp xúc với AB, AC lần lượt tại H và K. Qua D trên cung nhỏ HK, kẻ tiếp tuyến với (O) cắt AB và AC ở M và N
a) Cminh: A,H,O,K cùng thuộc một đường tròn
b) Cminh: Góc MON = Góc ABC
c) Tính tích BM.CN theo a
d) Xác định vị trí của MN sao cho BM+ CN đạt giá trị nhỏ nhất
Cho đường tròn (O;R) và dây cung BC sao cho góc BOC = 90 độ. Tiếp tuyến với đường tròn tại B và C cắt nhau ở A. Trên cung nhỏ BC lấy điểm I, qua I vẽ tiếp tuyến với đường tròn cắt AB, AC lần lượt tại M và N.
a) Chứng minh tứ giác ABOC là hình vuông
b) OM, ON cắt BC lần lượt tại H và K. Chứng minh tứ giác OHNC nội tiếp
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1,Cho tam giác ABC. Trên cạnh AC lấy điểm E cố định , trên cạnh BC lấy điểm F cố định ( E khác A và C; F khác B và C). Trên cạnh AB lấy điểm D di động ( D khác A và B) . Hãy xác định vị trí điểm D trên đường thẳng AB sao cho DE^2+DF^2 có giá trị nhỏ nhất.
2,Cho tam giác ABC vuông tại A có đường cao AH. Gọi I là tâm đg tròn nội tiếp tam giác, E,F,D lần lượt là hình chiếu của I trên AC, AB,BC.Gọi M là trung điểm AC.MI cắt AB tại N.FD cắt AH tại P. Chứng minh AN=AP
Cho tam giác ABC cân tại A. Gọi D, E lần lượt lầ trung điểm của AB, AC. M là điểm chuyển động trên đường thẳng DE. Đường tròn tâm O tiếp xúc với AB, AC theo thứ tự tại B,C.Đường tròn đương kính OM cắt đường tròn tâm O tại N,K. Xác định vị trí của điểm M để bán kính đường tròn ngoại tiếp tam giác ANK nhỏ nhất.
Từ A ngoài đường tròn tâm O, kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a• ( không đổi ) . Từ I bất ki trên cung nhỏ MN. Vẽ tiếp tuyến cắt AM , AN lần lượt tại B và C. OB và OC cắt đường tròn O tại D và E. Cm : Cung DE không đổi khi I chạy trên cung MN
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
2. Giả sử M là điểm di chuyển trên đoạn CE .
a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.
b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.