Cho ΔABC ngoại tiếp (O) tiếp xúc với các cạnh AB,AC,BC lần lượt tại D,E,F.
a, CMR: \(\frac{1}{2}\left(AB+AC+BC\right).R=S_{\Delta ABC}\)
b, CMR : ΔABC vuông nếu 2BF . CF = AB . AC
Cho tam giác ABC vuông cân tại A. M là trung điểm cạnh BC. Từ đỉnh M vẽ góc 45 độ sao cho các cạnh củ góc này làn lượt cắt AB, AC tại E và F.
Chmr: \(S_{\Delta MEF}< \frac{1}{4}S_{\Delta ABC}\)
Cho tam giác ABC vuông tại A, trung tuyến AM, biết \(\Delta ABM\) là tam giác đều có cạnh 2cm.
a,Tính độ dài AC và đường cao AH của \(\Delta ABC\)
b,Tính diện tích của \(\Delta ABC\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
Cho\(\Delta ABC\) nhọn,BC=a,CA=b,AB=c.
CMR:
\(S_{\Delta ABC}=\frac{1}{2}bc.sinA=\frac{1}{2}ca.sinB=\frac{1}{2}ab.sinC\)
1/ Cho ΔABC có AB=12cm, AC=15cm, BC=18cm. Tính độ dài phân giác AD của ∠A và tính số đo các góc ΔABC (làm tròn đến phút)
2/Cho ΔABC vuông tạ A, M là tr/điểm BC, N là hình chiếu của M trên AC, NK⊥BC, biết MN=15cm, NK=12cm
a) Tính \(S_{\text{ΔABC}}\). b) Tính các góc ΔABC
3/ Cho ΔABC vuông tại A, đường cao AH chia ΔABC thành 2 tam giác có diện tích là 54cm\(^2\)và 96cm\(^2\). Tính cạnh huyền BC và số đo ∠B
4/Cho hình thang ABCD có AB//CD, ∠A=∠D=90\(^O\), BD⊥BC, kẻ BI⊥CD (I ∈ CD), DB=5cm, BC=12cm
a) CMinh DB\(^2\)=AB.CD
b) Kẻ Cx⊥DC cắt DB tại E và AB tại F. CMinh BD.BE=DI.CI+FE.FC
Cho tam giác ABC có 3 góc nhọn với các đường cao AD,BE,CF cắt nhau tại H.
a, CMR: \(\Delta AEF\sim\Delta ABC\) ; \(\frac{S_{AEF}}{S_{ABC}}=\cos^2\alpha\)
b, CMR: \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cho biết AH = k.HD. CMR: \(\tan B.\tan C=k+1\)
d, CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Cho ΔABC có độ dài ba cạnh là a,b,c.Các phân giác BE và CF giao nhau tại O. Chứng minh: ΔABC vuông tại A<=> 2BO.CO=BE.CF
1, Cho \(\Delta ABC\) vuông tại A , AM là đường giác trong của \(\Delta\)\(\left(M\in BC\right)\).AB=6 cm , AC=8 cm
Tính MA
2,Cho\(\Delta ABC\) phân giác AD , AB=5 cm ,AC =8 cm, BD=4 cm .Tính \(S_{ABC}\)