1/ a) Cho sin α=1/5. Tính 4cos\(^2\alpha\)-6sin\(^2\alpha\)
b)Cho tg α+cotg α=3. Tính sin α.cos α
2/Cho ΔABC vuông tại A có BC=8cm,diện tích ΔABC là \(8\sqrt{3}cm^2\). Tính AB,AC,∠B,∠C
3/ Cho ΔABC vuông tại A có cos B=0,6
a) Tính sin B,tan B,cotg B
b) Tính sin C,tan C,cotg C
4/ Cho ΔABC vuông tại A có BC=10cm đường cao AH=\(\sqrt{21}\)cm. Tính ∠B,∠C
5/Cho ΔABC có AC=2a,∠C=30,BC=a\(\left(a\sqrt{3}+1\right)\). Tính AB,∠A,∠B
6/ Cho ΔABC. Cminh:
a) AB\(^2=AC^2+BC^2-2.AC.BC.cosC\)
b)\(AB^2=AB^2+BC^2-2.AB.BC.cosB\)
c)\(BC^2=AB^2+AC^2-2.AB.AC.cosA\)
Cho ΔABC vuông tại A (AB < AC), đường cao AH, AD là phân giác \(\widehat{HAC}\) (H, D ∈ BC), phân giác \(\widehat{ABC}\) cắt AD tại I.
a) Cm: I là trung điểm AD.
b) Giả sử \(AC^2-AB^2=AB.BC\). Cm: ΔDIH đều.
Cho ΔABC, trung tuyến AM, đường thẳng d//BC cắt AB, AC tại D và E, BE cắt CD tại O. CM: A, O, M thẳng hàng
1. Cho ΔABC ; AH ⊥ BC , cho góc B = 42° ; AB = 12cm ; BC = 22 cm
Tính cạnh , góc ΔABC
2. Đường cao AH chia BC thành 2 đoạn 12 cm và 18 cm , góc B = 60°. Tính cạnh AB , AH , AC , góc ΔABC ?
Help me . Mai nộp rồi ạ
Cho \(\Delta ABC\) có 3 góc nhọn, \(\widehat{BAC}\) = 45\(\Delta\:ABC\) nội tiếp đường tròn (O). Các đường cao BD, CE cắt nhau tại H với (D \(\in AC\) ; \(E\in AB\))
a) CM: ADHE & BEDC nội tiếp
b) CM: \(\Delta ADE\sim\Delta ABC\) & tính tỉ số \(\frac{DE}{BC}\)
c) CM: OA \(\perp\) DE
Cho ΔABC ngoại tiếp (O) tiếp xúc với các cạnh AB,AC,BC lần lượt tại D,E,F.
a, CMR: \(\frac{1}{2}\left(AB+AC+BC\right).R=S_{\Delta ABC}\)
b, CMR : ΔABC vuông nếu 2BF . CF = AB . AC
cho tam giác ABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a, Chứng minh tam giác ABC vuông
b, Tính góc B, góc C, đường cao AH
Cho \(\Delta\)ABC vuông tại A, AH\(\perp\) BC, biết AB - AC = 3 cm, AH = 7,2 cm. Tính HB, HC, BC, AB, AC.