Kẻ 3 đg cao AD,BE,CF của ΔABC
+ \(\left\{{}\begin{matrix}sinA=\frac{BE}{c}\\sinB=\frac{CF}{a}\\sinC=\frac{AD}{b}\end{matrix}\right.\)
+ \(S_{ABC}=\frac{1}{2}\cdot BE\cdot b=\frac{1}{2}\cdot CF\cdot c=\frac{1}{2}\cdot AD\cdot a\)
\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot\frac{BE}{c}=\frac{1}{2}ca\cdot\frac{CF}{a}=\frac{1}{2}ab\cdot\frac{AD}{b}\)
\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot sinA=\frac{1}{2}ca\cdot sinB=\frac{1}{2}ab\cdot sinC\)