Cho tam giác ABC có 3 góc nhọn với các đường cao AD,BE,CF cắt nhau tại H.
a, CMR: \(\Delta AEF\sim\Delta ABC\) ; \(\frac{S_{AEF}}{S_{ABC}}=\cos^2\alpha\)
b, CMR: \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cho biết AH = k.HD. CMR: \(\tan B.\tan C=k+1\)
d, CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Cho ΔABC có 3 góc nhọn, ba đường cao AD, BE, CF.
a) CM: \(AF.BD.CE=AB.BC.CA.\cos A.\cos B.\cos C\)
b) Giả sử: \(\widehat{BAC}=60^o\), \(S_{ABC}=144\). Tính \(S_{AEF}\)
c) CM: \(S_{DEF}=\left[1-cos^2A-cos^2B-cos^2C\right].S_{ABC}\)
Cho tam giác ABC,vẽ 3 đường cao AD,BE,CF.CMR:
\(a)S_{AEF}=S_{ABC}.Cos^2A\\ b)AE.BF.CD=AB.AC.BC.CosA.CosB.CosC\\ c)\frac{S_{DEF}}{S_{ABC}}=1-\left(CosA-CosB-CosC\right)\)
Cho tam giác ABC nhọn. Các đường cao AI, BK, CS cắt nhau tại H
a, Cminh: \(\frac{AI}{HI}+\frac{BK}{HK}+\frac{CS}{HS}\ge9\)
b, Cminh \(S_{\Delta ASK}=S_{ABC}.\cos^2A\)
Cho tam giác nhọn ABC , hai đường cao BD và CE . CMR :
a, \(S_{ADE} = S_{ABC} .cos^2A\)
b, \(S_{BCDE} = S_{ABC} . sin^2A\)
cho tam giác ABC có 3 góc nhọn và 3 đường cao AH,BE,CF . c/m \(\dfrac{s_{HEF}}{s_{ABC}}=1-cos^2(A-cos^2(B-cos^2(C\)
Cho ΔABC ngoại tiếp (O) tiếp xúc với các cạnh AB,AC,BC lần lượt tại D,E,F.
a, CMR: \(\frac{1}{2}\left(AB+AC+BC\right).R=S_{\Delta ABC}\)
b, CMR : ΔABC vuông nếu 2BF . CF = AB . AC
I : Cho tam giác ABC nhọn , đường cao AH BK CN
a) C/m: \(\Delta ABK\sim\Delta ACN\)\
b) C/m: \(\left(\frac{AK}{AB}\right)^2=\frac{AN.NK}{AC.AB}\)
c) C/m: \(\frac{Sakn}{Sabc}=cos^2a\)
d) C/m: \(\frac{Shkn}{Sabc}=1-\left(cos^2a+cos^2b+cos^2c\right)\)
help me !!!
cho tam giác abc có 3 góc nhọn và các đường cao ad , be , cf gọi h là trực tâm tam giác abc , c/m
a. tg aef đồng dạng tg abc
b. ha.hd=hb.he=hc.hf
c. diện tích tg abc=1/2.ab.ac.sinA
d. diện tích tg def / dt tg abc = 1 - (cos^2A+cos^2B+cos^2C )