a: Xét tứ giác DEPF có
M là trung điểm chung của DP và EF
=>DEPF là hbh
=>DE=FP<DF
=>góc PDF<góc FPD
góc EDM=góc FPM
=>góc EDM<góc MDF
b: DE+DF=FP+DF>DP=2DM
a: Xét tứ giác DEPF có
M là trung điểm chung của DP và EF
=>DEPF là hbh
=>DE=FP<DF
=>góc PDF<góc FPD
góc EDM=góc FPM
=>góc EDM<góc MDF
b: DE+DF=FP+DF>DP=2DM
Cho tam giác DEF vuông tại E. Kẻ đường trung tuyến DM. Trên tia đối của tia MD lấy P sao cho MD =MP.
a) Chứng minh tam giác DEM = tam giác PFM, từ đó suy ra DE song song với PF
b) Chứng minh góc EDM > góc MDE
c) Từ M kẻ MI vuông góc với DF tại I. Chứng minh EM > MI
d) Gọi Q là giao điểm DE và MI. Chứng minh : DM vuông góc với QF
Cho tam giác ABC có AB=AC, đường cao BH. Từ điểm D trên cạnh BC kẻ DE vuông góc với AB, DF vuông góc với AC, DK vuông góc với BH.
a) Chứng minh rằng góc KDB= góc ACB.
b) Chứng minh rằng tam giác EBD = tam giác KDB
c) Chứng minh rằng DE+ DF= BH
d) Trên tia đối của tia CA lấy điểm P sao cho CP = HF. Chứng minh rằng trung điểm của EP nằm trên BC.
e) Cho góc A = 40độ, kẻ đường cao AM. Trên các đoạn thẳng AM , AC lấy điểm E, F sao cho góc ABE= góc CBF = 30độ. Tính góc AEF.
Hộ mik với ạ mik cần gấp cảm ơn ạ
Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740
. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300
. Vẽ phân giác AD ( D BC). Vẽ DE
vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều
Cho tam giác ABC và trung tuyến AM, AB<AC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA, nối B với E.
a, chứng
Cho tam giác ABC và trung tuyến AM, AB<AC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA, nối B với E.
a, chứng minh BE=AC và BE// AC
b, Gọi D là giao điểm của AB.Trên tia đối của tia DE lấy điểm F sao cho DF=DE. Chứng minh rằng A là trung điểm của CF
c, Hãy so sánh độ lớn hai góc BAM và góc MAC
cho tam giác def vuông tại D có DE < DF. Gọi I là trung điểm của DF. Trên tia đối của tia IE lấy điểm A sao cho EI = IA. Chứng minh:
a)tan giác DEI = tam giác FAI
b) DF vuông góc với AF
c) EF song song với DA
d) Qua điểm D, kẻ đường thẳng song song với EA và cắt FA tại B. Chứng minh rằng A là trung điểm của FB.
e) Gọi K là trung điểm của DA. Chứng minh 3 điểm E,K,B thẳng hàng
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
Cho tam giác cân DEF (DE = DF). Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H.
1. Chứng minh HE = HF. Giả sử DE = DF = 5cm, EF = 8cm. Tính độ dài đoạn DH.
2. Chứng minh EM = FN và góc DEM = DFN
3. Gọi giao điểm của EM và FN là K. Chứng minh KE = KF.
4. Chứng minh ba điểm D, K, H thẳng hàng.
Mọi người giúp em bài này với ạ
Cho tam giác DEF vuông tại D (DE < DF). Kẻ tia phân giác của góc DEF cắt DF tại A. Trên cạnh EF lấy điểm B sao cho: EB = ED. 1) Chứng minh rằng: ∆EDA = ∆EBA; 2) Gọi giao điểm của DB và EA là I. Hỏi I có là trung điểm của DB không? Vì sao? 3) Kéo dài BA cắt ED tại K. Chứng minh: DK = BF và DB // KF.
cho tam giác DEF có DE=DF . Gọi M là trung điểm của EF chứng minh rằng
A, tam giác DEM = tam giác DFM
B,chứng minh góc DME = góc DMF từ đo suy ra DM vuống góc EF
C, trên tia đối của tia MD lấy điểm N sao cho M là trung điểm của DN chứng minh DE// NF
D , Vẽ điểm I thuộc DE , điểm k thuộc đoạn NF sao cho DI=NK chứng minh ba điển I,M,K thẳng hàng