Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\cdot\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)
\(\cdot\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)
\(\cdot\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{4}\)
\(\Rightarrow\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{4}\left(=\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}\right)\)
\(\Rightarrow\)\(\Rightarrow\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
Vậy \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)