Cho dãy số được xác định bởi: U1=12
\(\frac{2\cdot U_{n+1}}{n^2+5n+6}=\frac{U_n+n^2-n-2}{n^2+n}\)
Tìm số hạng tổng quát của dãy số
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số có các số hạng đầu là : 5,10,15,20,25,..số hạng tổng quát của dãy số trên là : A.Un=5(n-1) B.Un=5n C.Un=5+n D.Un=5n+1
6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là
7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là
8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số
9) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số tăng
A.\(u_n=\left(\dfrac{2}{3}\right)^n\)
B. \(u_n=\dfrac{n}{n+1}\)
C. \(u_n=\dfrac{2}{n.\left(n+1\right)}\)
D. \(u_n=\dfrac{n+1}{n}\)
10) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số giảmA. \(u_n=3^n\)B. \(u_n=\dfrac{n-3}{n+1}\)C. \(u_n=\dfrac{n+4}{n+2}\)D. \(u_n=n^4+2\)Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Cho dãy số u n : u 0 = u 1 = 1 u n + 1 = 4 u n - 4 u n - 1 v ớ i m ọ i n ≥ 1
công thức của số hạng tổng quát của dãy số là
A. u n = 1
B. u n = 2 n - n . 2 n - 1
C. u n = - n 2 + n + 1
D. u n = n 2 + 2 n + 3 3 n + 1