Đáp án B
Đặt t = log u 1 , khi đó giả thiết ⇔ t 3 - 2 t 2 + t - 2 = 0 ⇔ t - 2 t 2 + 1 = 0 ⇔ t = 2 ⇒ log u 1 = 2
Ta có u n + 1 = 2 u n + 10 ⇔ u n + 1 + 10 = 2 u n + 10 ⇔ v n + 1 = 2 v n với v n = u n + 10
Dễ thấy v n + 1 = 2 v n là một cấp số nhân với công bội q = 2 ⇒ v n = v 1 . 2 n - 1
Mà log u 1 = 2 ⇒ u 1 = 10 2 = 100 suy ra v 1 = u 1 + 10 = 110 ⇒ v n = 100 . 2 n - 1
Khi đó u n = v n - 10 = 100 . 2 n - 1 - 10 > 10 100 - 10 ⇔ 2 n - 1 > 10 98 ⇔ n > log 2 10 98 + 1 = 326 , 54
Vậy giá trị nhỏ nhất của n cần tìm là n m i n = 327 .