áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}=\frac{ab+bc+bc+ca+ca+ab}{a+b+b+c+c+a}=\frac{2\left(ab+bc+ca\right)}{2\left(a+b+c\right)}=\frac{ab+bc+ca}{a+b+c}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta lại có
\(\frac{ab+bc+ca}{a+b+c}=\frac{ab}{a}+\frac{bc}{b}+\frac{ca}{c}=\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{a}\)
Từ \(\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{c}\Rightarrow\frac{b}{1}=\frac{c}{1}=\frac{a}{1}\Rightarrow b=c=a\)
vậy a=b=c (đpcm)
Đúng 0
Bình luận (0)
Bao nhiêu **** cho hình này !!!!?????????????????/ Tick mạnh vô ae ơi
Đúng 0
Bình luận (0)