Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Cho dãy số xác định bởi u1=1 , u n+1 = \(2un+\frac{n-1}{n^2+3n+2}\). khi đó u 2018 bằng
Cho dãy số ( u n ) xác định bởi u 1 = 1 u n + 1 = 2 u n + 3 u n + 2 v ớ i n ≥ 1
a) Chứng minh rằng u n > 0 với mọi n.
b) Biết ( u n ) có giới hạn hữu hạn. Tìm giới hạn đó.
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số được xác định bởi: U1=12
\(\frac{2\cdot U_{n+1}}{n^2+5n+6}=\frac{U_n+n^2-n-2}{n^2+n}\)
Tìm số hạng tổng quát của dãy số
Cho dãy số có giới hạn (un) xác định bởi : u 1 = 1 2 u n + 1 = 1 2 - u n , n ≥ 1 . Tìm kết quả đúng của u n .
A. 0.
B. 1.
C. -1.
D. 1 2 .
1) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=n^2-1\)
a) tính \(u_1,u_2,u_3,u_4\)
b) 99 là số hạng thứ mấy của dãy
2) cho dãy số \(\left(u_n\right)\) xác định bởi \(u_n=\dfrac{2n-1}{n+1}\)
a) tính \(u_1,u_2,u_3,u_4\)
b) \(\dfrac{13}{7}\) là số hạng thứ mấy của dãy
Cho dãy số (\(u_n\)) xác định: \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=2u_n-3\end{matrix}\right.\).Tìm giới hạn lim(\(\dfrac{u_n}{2^n}\))
cho dãy số \(\left(u_n\right)\) được xác định như sau: \(\hept{\begin{cases}u_1=u_2=1\\u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}},\end{cases}\left(n\ge2,n\in N\right)}\)
Chứng minh dãy \(\left(u_n\right)\)có giới hạn hữu hạn. Tính giới hạn đó.