a: Xét ΔADE vuông tại D và ΔACE vuông tại C có
AE chung
AD=AC
Do đó:ΔADE=ΔACE
b: Ta có: ΔADE=ΔACE
nên \(\widehat{CAE}=\widehat{DAE}\)
hay AE là tia phân giác của góc DAC
a: Xét ΔADE vuông tại D và ΔACE vuông tại C có
AE chung
AD=AC
Do đó:ΔADE=ΔACE
b: Ta có: ΔADE=ΔACE
nên \(\widehat{CAE}=\widehat{DAE}\)
hay AE là tia phân giác của góc DAC
Cho tam giác ABC vuông tại C (AB < AC) . Trên cạnh AB lấy điểm D sao cho AD = AC . kẻ qua D đường thẳng vuông góc với Ab cắt BC tại E . AE cắt CD tại I .
a) Chứng Minh : AE là phân giác góc CAB
b) Chứng Minh : AE là trung trực của CD
c) So sánh : CD và BC
d) M là trung điểm của BC , DM cắt BI tại G , CG cắt DB tại K . Chứng Minh : K là trug điểm của DM
cho tam giác ABC vuông tại A(AB<AC) đường phân giác CD của góc C(D thuộc AB) vẽ DH vuông góc với BC. Trên tia AB lấy E sao cho AE=AC. Qua E vẽ đường thẳng vuông góc với AE cắt tia DH tại K. CM: AC=CH; EC là tia phân giác góc AEK; góc DCK=45 độ
Cho tam giác ABC vuông tại C. Trên cạnh AB lấy D sao cho AD = AC. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a, C/M AE là p/giác của góc CAB
b, C/M AE là trung trực của CD
c, So sánh CD và BC
d, M là trung điểm của BC, DM cắt BI tại C, CG cắt DB tại K. C/m K là trung điểm của DB
Cho tam giác ABC vuông tại C. Trên cạnh AB lấy điểm D sao cho AD= AC. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I. Biết AE là tia phân giác góc CAB và AE là đường trung trực của CD và CD > BC. M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB
Cho tam giác ABC vuông tại C. Trên cạnh AB lấy điểm D sao cho AD = AC . Qua D kẻ đường thẳng vuông góc với AB cắt BC tại E . AE cắt CD tại I
a) Chứng minh : AE là phân giác của góc CAB
b) Chứng minh : AE là trung trực của CD
c) So sánh : CD và BC
Cho tam giác ABC vuông tại C. Trên cạnh AB lấy điểm D sao cho AD= AC. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I. Biết AE là tia phân giác góc CAB và AE là đường trung trực của CD và CD > BC. M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB
B1. Cho ΔABC có Aˆ=90∘. AB = AC, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Đường thẳng qua D và vuông góc với BE cắt đường thẳng CA ở K. CMR: AK = AC
B2. Cho ΔABC, I là trung điểm của AB, đường thẳng qua I và song song với BC cắt AC ở K. Đường thẳng qua K và song song với AB cắt BC ở H. CMR
a) KH = IB
b) AK = KC
B3. Cho ΔABC có Aˆ = 60∘. Tia phân giác của Bˆ cắt AC ở D, tia phân giác của Cˆ cắt AB ở E. Gọi O là giao điểm của BD và CE.
a) Tính BOCˆ
b) C/m CD = OE
B4. Cho ΔABC. Ở phía ngoài ΔABC vẽ các tam giác vuông tại A là ABD và ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của HA và DE. CMR: DI = IE
Giúp em với !! T7 phải nộp rồiii
Cho ABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I. a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
Cho ΔABC vuông tại A có AB = 3 cm, BC = 5 cm . Lấy điểm M trên cạnh BC sao cho BD = BA. Kẻ đường thẳng vuông góc với BC tại D cắt AC tại E.
a, Tính độ dài đoạn thẳng AC
b, Chứng minh BE là tia phân giác của ˆABC
c, So sánh AE và EC
d, Chứng minh BE là đường trung trực của AD