a: AH*AD=AB^2
BH*BC=AB^2
DO đó: AH*AD=BH*BC
b: Xét tứ giác AHIE có góc AHI+góc AEI=90 độ+90 độ=180 độ
nên AHIE là tứ giác nội tiếp
a: AH*AD=AB^2
BH*BC=AB^2
DO đó: AH*AD=BH*BC
b: Xét tứ giác AHIE có góc AHI+góc AEI=90 độ+90 độ=180 độ
nên AHIE là tứ giác nội tiếp
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 600. D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ tia Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt Cx tại F. Chứng minh BF vuông góc CF.
cho tam giác abc nhọn ( ab < ac) . vẽ đường tròn tâm o đường kính bc cắt ab và ac tại f và e , cf cắt be tại h
a) chứng minh ah vuông góc với bc tại d
b) chứng minh 4 điểm a,f,h,e cùng thuộc 1 đường tròn , xác định tâm i của đường tròn này
c) chứng minh ie và if là 2 tiếp tuyến của (o)
Cho đường tròn (O; R) và BC là đường kính. Trên tia đối của tia BC lấy điểm A. Qua A vẽ hai tiếp tuyến AD, AE với đường tròn (O; R), (D, E là các tiếp điểm). Kẻ DH vuông góc với EC tại H. DE, DH cắt AC thứ tự tại I và K. a) Chứng minh bốn điểm A, D, O, E cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó. b) Cho AO = 3R. Tính AE và OI theo R. c) Chứng minh rằng: 2IE2 = DK.DH. d) Qua I kẻ đường thẳng song song với EC cắt DH tại M. Kéo dài CM cắt đường tròn (O; R) tại điểm thứ hai là N. Chứng minh đường thẳng DN đi qua trung điểm của AI.
Cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Lấy điểm M trên đoạn HC sao cho HM=AM. Qua M vẽ 1 đường thẳng vuông góc với BC, cắt AC tại D. Từ D kẻ đường thẳng song song với BC cắt AH tại K
a)Chứng minh AK=BH
b)chứng minh 1/AH^2=1/AD^2+1/AC^2
Mọi người giải giúp em vớii, em cảm ơnn
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho tam giác ABCD vuông tại A, phân giác BF. Từ điểm I nằm giữa B và F vẽ đường thẳng song song với AC cắt AB, BC lần lượt tại M và N. Vẽ đường trong ngoại tiếp tam giác BIN cắt AI tại D. Hai đường thẳng DN và BF cắt nhau tại E. Chứng minh:
a, Bốn điểm A, B, D, E cùng thuộc một đường tròn
b, Năm điểm A, B, C, D, E cùng thuộc một đường tròn. Từ đó suy ra BE vuông góc với CE
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH, đường tròn này cắt AB, AC lần lượt tại E và F. Gọi K là trung điểm của HC, đường vuông góc với EC tại C cắt FK tại P. Chứng minh rằng: BP song song với AC