a)\(\dfrac{SABD}{SACD}=\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{12}{16}=\dfrac{3}{4}\)
b) Vì \(\Delta ABC\) là tam giác vuông nên:
Áp dụng định lí Pi- ta- go: \(BC^2=AB^2+AC^2\\ BC^2=400\\ BC=20cm\)
c) Vì BC= BD + CD= 20 cm
và \(\dfrac{BD}{CD}=\dfrac{3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\\ \left\{{}\begin{matrix}\dfrac{BD}{3}=\dfrac{20}{7}\Rightarrow BD=\dfrac{60}{7}cm\\\dfrac{CD}{4}=\dfrac{20}{7}\Rightarrow CD=\dfrac{80}{7}cm\end{matrix}\right.\)
d)\(SABC=\dfrac{1}{2}AH\cdot BC\\ \Rightarrow AH=\dfrac{SABC}{BC}=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9,6cm\)