Cho ABC nhọn, đường trung tuyến AM. Điểm O bất kỳ trên đoạn AM. F là giao điểm của BO và AC, E là giao điểm của CO và AB. Từ M kẻ các đường thẳng song song với CE, BF cắt AB, AC lần lượt tại H, K.
a) Chứng minh EF / /HK .
b) Chứng minh EF / /BC.
c) Chứng minh N là trung điểm của FE.
Cho tam giác ABC và đường trung tuyến AM. F là giao điểm của BO và AC E là giao điểm của CO và AB Từ M kẻ đường thẳng song song với OC cắt AB tại H và kẻ đường thẳng song song với OB cắt AC tại K. CMR
a) EF song song với HK
b) EF song song với BC
Cho tam giác ABC và trung tuyến AM. Điểm O bất kì thuộc AM. F là giao điểm của BO và AC, E là giao điểm của CO và AB. Từ M kẻ đường thẳng song song với AC cắt AB tại H và kẻ đường thẳng song song với OB cắt AC tại K. Chứng minh:
a, EF // HK
b, EF//BC
Cho tam giác ABC , đường trung tuyến AM , điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC, cắt các đường thẳng BE và CF lần lượt tại H và K . CM : EF song song với BC
B1 : Cho tam giác ABC, lấy điểm O bất kì trong tam giác đó. Vẽ các tia AO,BO,CO cắt BC,AC,AB lần lượt tại P,Q và R
CM: \(\frac{OA}{AP}+\frac{OB}{BQ}+\frac{OC}{CR}=2\)
B2: Cho tam giác ABC, vẽ trung tuyến AM. Điểm I bất kì trên AM, F là giao điểm của BI và AC. E là giao điểm của CI và AB. Từ M kẻ đường thẳng song song với IC cắt AB tại H và kẻ đường thẳng song song với IB cắt AC tại K
CM a, EF\(//\)HK
b, EF\(//\)BC
Các bạn giúp mk nha (Có hình càng tốt)
Cho tam giác ABC và đường trung tuyến AM. F là giao điểm của BO và AC E là giao điểm của CO và AB Từ M kẻ đường thẳng song song với OC cắt AB tại H và kẻ đường thẳng song song với OB cắt AC tại K. CMR
a) EF song song với HK
b) EF song song với BC
Cho ΔABC ( AB<AC), đường phân giác AD. Qua trung điểm M của BC, kẻ đường thẳng // AD, cắt AC,AB lần lượt tại E,K. Gọi O là giao điểm AM và DK
a, CM AO.OK=DO.OM
b, cho AB=5cm, AC=10cm, BC=12cm. tinhd BD
c, cm AE=AK, AB/CE=BD/CM
Cho tam giác ABC, đường trung tuyến AM, điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC cắt các tia BE và CF lần lượt tại K và H. Chứng minh: a) AH = AK. b) EF // BC.
cho tam giác ABC, đường trung tuyến AM. Điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm CI và AB. Qua A kẻ đường thẳng xy//BC cắt CF và BE tại H và K:
a) CM :\(HA.IM=IA.MC\)
b)CM:\(AH=AK\)
c)CM: EF//BC
d) CM: \(\frac{AF}{BF}+\frac{AE}{CE}=\frac{AI}{IM}\)