Bài 1: Cho tam giác ABC, một đường thẳng song song với cạnh BC cắt AB tại D
và AC tại E. Trên tia đối của tia CA lấy F sao cho CF = BD. Gọi M là giao điểm của DF
và BC.
a) Chứng minh
MD/MF=AC/AB
b) Cho BC = 8cm, BD = 5cm và DE = 3cm. Chứng minh ΔABC cân.
Bài 2:Cho tam giác ABC, M là điểm bất kì trên BC. Vẽ đường thẳng MN song
song với AC (N thuộc AB), đường thẳng MP song song với AB (P thuộc AC).
Chứng minh 1. AN/AB+AP/AC=1
GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP!!!
cho tam giác abc. o nằm trong tam giác. qua o kẻ đường thẳng song song với bc cắt ab, ac ở m, n, đường thẳng song song với ca cắt ba, bc ở f, k, đường thẳng song song với ab cắt ca, cb ở d,e. chứng minh af/ab + be/bc + cn/ca = 1
Cho \(\Delta ABC\)đều. M là 1 điểm bất kì trên cạnh BC. Lấy N đối xứng với M qua AB ; Q đối xứng với M qua AC. Đường thẳng song song với MQ qua N và đường thẳng song song với MN qua Q cắt nhau tại P. Chứng minh AP // BC
cho tam giác abc, ad là trung tuyến, M là trung điểm của AD. Tia BM cắt cạnh AC tại P, đường thẳng song song với AC kẻ từ D cắt BP tại I. a) Chứng minh PA = DI. Tính tỉ số AP/AC.
b) Tia CA cắt AB tại Q. CHứng minh PQ//BC
Cho hình chữ nhật ABCD (AB > AD). Trên cạnh AD, BC lần lượt lấy các điểm M và N sao cho AM = CN.
d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. Chứng minh rằng: AC ⊥ CK.
Cho tam giác ABC, một đường thẳng song song với BC cắt cạnh AB, AC lần lượt tại M và N. Qua C kẻ đường thẳng song song với BN cắt đường thẳng AB tại P. Chứng minh rằng: AB2 = AM . AP
cho tam giác ABC có AB=8cm , AC= 10 cm. Trên cạnh AB lấy điểm M sao cho BM=2cm,vẽ đường thẳng qua M và song song với BC cắt AC tại N
a, Tính CN
b,Một đường thẳng qua N và song song với AB cắt BC tại P
c/m : tam giác BMN\(\approx\) tam giác NPB
c, tính tỉ số diện tích \(\frac{NPC}{AMN}\)
cho tam giaác ABC điểm E nằm trong tam giác .các tia AE, BE ,CE cắt các cạnh BC, AC,AB theo thứ tự M,N,P. qua A kẻ đường thẳng song song với BC cắt các tia CE tại H và cắt tia BE tại K
chứng minh: AK/BM =AH/DM
b.cm AN/CN+AP/BP=AE/EM
Cho ΔABC có AB = AC . Trên cạnh BC lấy điểm M , qua M kẻ đường thẳng song song với AC cắt cạnh AB tại N, qua M kẻ đường thẳng song song với AB cắt cạnh AC tại P.
a,Chứng minh : tứ giác APMN là hình bình hành.
b, Chứng minh : AM , NP và đường thẳng đi qua trung điểm của cạnh AB , cạnh AC đồng quy .
c, Tìm vị trí của M trên cạnh BC để AM vuông góc với NP .
d, Chứng minh rằng : chu vi tứ giác APMN không thay đổi khi M di động trên cạnh BC.
1) Cho tam giác ABC có phân giác AD và trung tuyến BE cắt nhau tại O. Đường thẳng qua O và song song với AC cắt AB và BA lần lượt tại M và N. Tình độ dài các cạnh AB và BC, biết rằng AM=12cm, AC=40cm, CN=14cm
2)cho tam giác ABC cân tại A có CD đường cao. Trên các cạnh CB và CA lấy các điểm E và F sao cho DC=CE=CF. Đường thẳng qua E song song với AB cắt CD tại K và AC tại N, đường thẳng qua F và song song với AB cắt BC tại M. Tính độ dài các cạnh tam giác ABC, biết rằng EM=9cm, FN=12cm, IK=6cm
3)Cho hình thang cân ABCD(AB//CD). Đường cao AH cắt đường chéo BD tại K. AD và BC cắt nhau tại M. Tính độ dài AM, biết rằng AD=20cm, DK/KB=2/3.