Lời giải:
Kẻ $MT\perp AC$
Xét tam giác $ABH$ và $AMH$ có:
$\widehat{BAH}=\widehat{MAH}$
$\widehat{AHB}=\widehat{AHM}$
$AH$ chung
$\Rightarrow \triangle ABH=\triangle AMH$ (c.g.c)
$\Rightarrow BH=HM$
Tương tự ta cũng cm được: $\triangle AMH=\triangle AMT$ (ch-gn)
$\Rightarrow HM=MT$
Do đó: $BH=HM=MT (=\frac{1}{2}BM$)
Mà $BM=MC$ nên $MT=\frac{1}{2}MC$
Xét tam giác $MTC$ vuông tại $T$ có $MT=\frac{1}{2}MC$ nên $\widehat{C}=30^0$
Xét tam giác $AHC$ vuông tại $H$ có $\widehat{C}=30^0$ nên $\widehat{HAC}=60^0$
Mà $\widehat{HAC}=\frac{2}{3}\widehat{BAC}$ nên $\widehat{BAC}=90^0$
Còn lại $\widehat{B}=60^0$