toàn bộ đề bài cho bạn nào không xem được hết đề bài ạ
toàn bộ đề bài cho bạn nào không xem được hết đề bài ạ
Cho tam giác ABC đều ,đường cao AH, h là trực tâm. Gọi E,F theo thứ tự là hình chiếu của M trên AB,AC; I là trung điểm AM.
a) C/m tam giác EID,DIF đều từ đso c/m tg DEIF là hình thoi.
b) Gọi N là trung điểm AH, O là giao điểm của EF và ID. c/m 3 điểm M,O,H thẳng hàng từ đó c/m 3 đường MH,ID,EF đồng quy tại 1 điểm
Giúp t bài này với :<
Cho tam giác ABC đều. Đường cao AH. Trên BH lấy điểm M, O là trung điểm AM. Kẻ MN vuông góc với AB, ME vuông góc AC
a, CM: ON=OH=OE
b, CM: Góc MOH=60
c, CM Góc HOE= 60
d, CM; MOEH là hình thoi
e. Gọi G là trực tâm tam giác ABC, I là giao điểm OH và ME
CM: M, I, G thẳng hàng
Mong mn giúp vs ạ ^^
cho tam giác đều ABC có đường cao AH. lấy điểm M thuộc BC, gọi I, K lần lượt là hình chiếu vuông góc của M trên cạnh AB và AC. Gọi O là trung điểm của AH. Gọi F là giao điểm AH và IK. Tính góc OFK =?
Cho tam giác ABC( AC>AB) có trực tâm H, gọi I là trung điểm BC, K là điểm đối xứng H qua I. CMR: a) BHCK là hình bình hành b) AH=2IO( O là giao điểm 3 đường trung tực trong tam giác) c) H,G,O thẳng hàng(G là trọng tâm tam giác ABC)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Gọi I,P,M lần lượt là trung điểm của AB,AC,BC.
a, IPMB là hình gì?
b, đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D; O là trung điểm của AD. CMR OM vuông góc với BC và 2OM=AH
c, Gọi G là trọng tâm của tam giác ABC. CMR 3 điểm H,G,O thẳng hàng.
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
chiều mình học rồi ạ.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.