Cho tam giác ABCD có AD là đường trung tuyến,G là trong tâm.Qua G kẻ đường thẳng cắt AB,AD lần lượt tại E,F. Từ B và C kẻ các đường thẳng // với EF cắt AD lần lượt tại M,N.
a) Chứng minh \(\dfrac{BE}{AE}\)=\(\dfrac{MG}{AG}\)
b) Chứng minh \(\dfrac{BE}{AE}\)+\(\dfrac{CF}{AF}\)=1
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác nhọn ABC, D và E lần lượt là trung điểm của AB,AC. Qua E kẻ đường thẳng song song với DC cắt BC tại F. Qua F và B lần lượt kẻ đường thẳng song song với BE và EF,chúng cắt nhau tại M
a, Cm BD=CM
b,Gọi N là giao điểm của BC và DM. Tính MN biết AC=4cm
1//Cho xAy khác góc bẹt. Trên tia Ax lấy các điểm B,C. Qua B và C vẽ 2 đường thẳng song song cắt Ay lần lượt ở D và E. Qua E vẽ đường thẳng song song với CD cắt tia Ax ở F
a, So sánh AB/AC và AD/AE ; AC/AF và AD/AE
b, CMR: AC^2 = AB * AE
2/ Cho G là trọng tâm tam giác ABC. Qua G vẽ đg thẳng song song với AB cắt BC tại D. CMR : BD = 1/3BC
Bài 1 : cho tam giác ABC (AB<AC), đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC, AB thứ tự tại E,K.
a) chứng minh: AE=AK
b) chứng minh: BK=CE
Bài 2 : cho tam giác ABC, qua trọng tâm G kẻ đường thẳng d cắt AB,AC tại E,F
chứng minh: BE phần AE bằng CF phần AF bằng 1
tam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KCtam giác ABC vuông cân tại A , D thuộc AB , E thuộc AC sao cho AD = AE . Qua D và A kẻ các đường thẳng vuông góc với BE cắt BC lần lượt tại I và K . CM IK = KC
Bài 30 Cho tam giác ABC, đường trung tuyến AD, BE,CF. Đường thẳng kẻ qua E song song với AB và qua F song song BE cắt nhau tại G
A, cm AFEG là hình bình hành
B, 3 điểm D,E,G thẳng hang và CG=AD
Cho tam giác ABC , đường trung tuyến AM , điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC, cắt các đường thẳng BE và CF lần lượt tại H và K . CM : EF song song với BC
Cho tam giác ABC có AD là phân giác của góc BAC ( D thuộc BC ) . TỪ D kẻ các đường thẳng song song vói AB và AC , chúng cắt AC , AB lần lượt tại E và F.
a) CM : tứ giác AEDF là hình thoi
b) Trên tia AB lấy G sao cho F là trung điểm của AG . Cm : tứ giác EFGD là hình bình hành
c) Gọi I là điểm đối xứng của D qua F , tia IA cắt DE tại K . Gọi O là giao điểm của AD và EF . Cm G đối xúng với K qua O