Kẻ CK vuông góc FM
=>CK//AB
Xét ΔECM vuông tại E và ΔKCM vuông tại K có
CM chung
góc ECM=góc KCM
=>ΔECM=ΔKCM
=>ME=MK
=>ME+MF=MK+MF=FK=CH ko đổi
Kẻ CK vuông góc FM
=>CK//AB
Xét ΔECM vuông tại E và ΔKCM vuông tại K có
CM chung
góc ECM=góc KCM
=>ΔECM=ΔKCM
=>ME=MK
=>ME+MF=MK+MF=FK=CH ko đổi
Cho tam giác ABC cân tại A, lấy M trên BC, kẻ ME vuông góc với AB, MF vuông góc với AC. Chứng minh khi M di động trên BC thì tổng ME+<F ko đổi???
Cho tam giác ABC cân tại A. m thuộc BC. ME,MF lần lượt vuông góc vớiAC,AB (E thuộc AC,F thuộc AB). Đường cao CH. Chứng minh rằng:
ME+MF không đổi khi M di chuyển trên BC.
Cho tam giác ABC , trên BC lấy điểm M. Vẽ ME, MF vuông góc với AC, AB, kẻ đường cao AD CMR:
a) BFM đồng dạng CEM
b) BHC đồng dạng CEM
c) ME + MF ko thay đổi khi M di động trên BC
CHO TAM GIÁC ABC CÂN TẠI A CÓ ĐƯỜNG CAO BH. TỪ ĐIỂM M TRÊN CANHJBC VẼ ME VUÔNG GÓC AB TẠI E, MF VUÔNG GÓC AC TẠI F
A) CM ME+MF=BH
B) HỆ THỨC THAY ĐỔI RA SAO NẾU M THUỘC ĐƯỜNG THẲNG BC NHƯNG KHÔNG THUỘC ĐOẠN BC
Bài 1: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng : Tg ADB đồng dạng với Tg AEC.
b)Chứng minh rằng :Tg AED đồng dạng Tg ACB.
C)Chứng minh rằng : HE.HC=HD.HB
d)Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC . Chứng minh rằng : H,M,K thẳng hàng.
Bài 2: Cho tam giác PQK cân tại P, trên QK lấy M . Vẽ ME,MF lần lượt vuông góc với PK , PQ. Kẻ đường cao KH. Chứng minh :
a)Tam giác QFM đồng dạng với tam giác QHK.
b)Tam giác QFM đồng dạng với tam giác KEM.
c)EM.QK=KM.KH
d)ME+MF ko thay đổi khi M di động trên QK
Từ điểm M nằm trong tam giác ABC vẽ MDvuông góc BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Trên các tia MD,ME,MF, lằn lượt lấy các điềm I,K,L sao cho MI/BC=MK/AC=MI/AB. Chứng minh rằng M là trọng tâm của tam giác I,K,L
Cho tam giác ABC vuông cân tại B. Trên AC lấy M vẽ ME vuông góc AB , MF vuông góc BC tại F
a) Tứ giác BEMF là hình gì ? vì sao
b)trên tia MF lấy K sao cho MK=AB
c)trên cạnh BC lấy I sao cho BE=BI , chứng minh tứ giác AEIC là hình thang cân
d)lấy D đối xứng với A qua BC. Chứng minh tứ giác ABCD là hình vuông
e)chứng minh:DE vuông góc AF
g) chứng minh : tam giác ADE = tam giác BAF
giải hộ e vs ạ
Cho tam giác ABC vuông cân tại C, M là điểm bất kì trên cạnh AB (M không trùng với A, B). Vẽ ME vuông góc AC tại E, MF vuông góc với BC tại F. gọi D là trung điểm của AB. CM: ΔDEF vuông cân
cho tam giác ABC vuông tại A , đường cao AH . gọi M là trung điểm của đoạn thẳng BC . Qua M vẽ các đường thẳng ME và MF lần lượt vuông góc với AB và AC( E thộc AB và F thuộc AC )
a, tính góc EHF
b, gọi EHF thay đổi thế nào khi M nằm trên cạnh BC