a: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
góc B chung
=>ΔBAC đồng dạng với ΔBDE
b: Xét ΔCHA vuông tại H và ΔCKD vuông tại K có
góc HCA=góc KCD
=>ΔCHA đồng dạngvơi ΔCKD
=>CH/CK=CA/CD
=>CH*CD=CK*CA
a: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
góc B chung
=>ΔBAC đồng dạng với ΔBDE
b: Xét ΔCHA vuông tại H và ΔCKD vuông tại K có
góc HCA=góc KCD
=>ΔCHA đồng dạngvơi ΔCKD
=>CH/CK=CA/CD
=>CH*CD=CK*CA
Cho ΔABC. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy E sao cho BD=BC=CE. Qua D kẽ đường thẳng song song với AB và cắt AC ở H. Que E kẻ đường thẳng song song với AC và cắt AB ở K, chúng cắt nhau ở I'
a/ Tứ giác BHCK là hình gì? Vì sao?
b/ Tia IA cắt BC ở M. Chứng minh MB=MC
c/ Tìm điều kiện của ΔABC để tứ giác DHKE là h.t.cân
Cho ΔABC. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy E sao cho BD=BC=CE. Qua D kẽ đường thẳng song song với AB và cắt AC ở H. Que E kẻ đường thẳng song song với AC và cắt AB ở K, chúng cắt nhau ở I'
a/ Tứ giác BHCK là hình gì? Vì sao?(ghi rõ cách lm ạ)
b/ Tia IA cắt BC ở M. Chứng minh MB=MC
c/ Tìm điều kiện của ΔABC để tứ giác DHKE là h.t.cân
Cho ΔABC vuông tại A. Vẽ AH⊥BC (H∈BC)
a,Chứng minh ΔHBA đồng dạng ΔABC
b,Có AB=9cm;AC=12cm. Tính BC,AH
c,Trên cạnh HC lấy điểm M sao cho HM=HA.Qua M vẽ đường thẳng vuông góc với BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc IMC tại A. Chứng minh rằng ba điểm H,I,K thẳng hàng
cho tam giác ABC vuông tại A có AB<AC lấy E thuộc CB sao cho CA=CE qua E kẻ đường vuông góc với BC cắt AB tại D a, chứng minh CD vuông với AE b, lấy F thuộc tia đối của AC sao cho AF=EB chứng minh 3 điểm EDF thẳng hàng
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC. Lấy các điểm D,E theo thứ tự thuộc tia đối của các tia BA, CA sao cho BD=CE=BC. Gọi O là giao điểm của BE và CD. Qua O vẽ đường thẳng song song với tia phân giác của góc A, đường thẳng này cắt AC ở K. Chứng minh rằng AB=CK
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH, H thuộc BC. Lấy điểm D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH. CD = CE. AD.
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi.
Bài 5: Cho AABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với B qua điểm H. Từ C kẻ đường thẳng vuông góc với tia AD tại E cắt AH tại F. a) Chứng minh: tứ giác ABFD là hình thoi và CD CE CB CF b) Tia FD cắt AC tại K. Chứng minh ACKE’ ACFA và KD là tia phân giác của HKE.
Cho tam giác ABC vuông tại A, kẻ tia phân giác góc ABC cắt AC tại D
a. Biết BC = 5cm, AB= 3cm. Tính AC và AD
b. Qua D kẻ DH vuông góc với BC tại H. CHứng minh ΔABC ᔕ ΔHDC từ đó chứng minh CH.CB = CD.CA
c. E là hình chiếu của A trên BC. Chứng minh BC/BA = HC/HE
d. O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO vafCA lần lượt tại M và N. Chứng minh M là trung điểm của BN
giúp mình câu c,d