a) \(P\left(0\right)=2.0^4+3.0^2+1=1\)
\(P\left(1\right)=2.1^4+3.1^2+1=6\)
\(P\left(-2\right)=2.\left(-2\right)^4+3.\left(-2\right)^2+1=45\)
b) Ta có : \(x^4\ge0\) và \(x^2\ge0\) với mọi x thuộc R, suy ra \(2x^4,3x^2\ge0\) với mọi x thuộc R.
Cộng lại ta được \(2x^4+3x^2\ge0\)
Hay \(P\left(x\right)=2x^4+3x^2+1\ge1>0\). Vì vậy, với mọi x = a thì \(P\left(a\right)>0\) với mọi a thuộc R.